Objectives: Diffusion-weighted imaging (DWI) is pivotal for prostate magnetic resonance imaging. This is rooted in the generally reduced apparent diffusion coefficient (ADC) observed in prostate cancer in comparison to healthy prostate tissue. This difference originates from microstructural tissue composition changes, including a potentially decreased fluid-containing lumen volume.
View Article and Find Full Text PDFObjective: To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI.
Materials And Methods: The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm).
Objectives: The purpose of this study was to investigate the relevance of focal liver lesions (FLL) size for lesion detection comparing navigator triggering (TRIG) to free breathing (FB) liver Diffusion-weighted magnetic resonance imaging (DWI).
Materials And Method: Patients with known or suspected FLL were prospectively (registry number 276_19 B) included from October to December 2019 in this study, out of which 32 had liver lesions. Echo planar spin-echo DWI data both with TRIG and FB were with approximately constant acquisition times acquired at 1.
Breast cancer is the most common cancer in women; approximately 1 in 8 women is diagnosed with breast cancer in their lifetime. Some women are at significantly higher risk of developing breast cancer, including women carrying mutations in the BRCA1/2, TP53, or other genes and women with other risk factors. Women with a high lifetime risk for breast cancer are frequently offered annual breast magnetic resonance imaging (MRI) examinations for early breast cancer detection.
View Article and Find Full Text PDFObjectives: This study aims to investigate the previously reported dependency of intravoxel incoherent motion (IVIM) parameters on simultaneous multislice (SMS) acquisition and repetition time (TR). This includes the influence of slice thickness, slice gaps, and slice order on measured IVIM parameters.
Materials And Methods: Diffusion-weighted imaging (DWI) of the liver was performed on 10 healthy volunteers (aged 20-30 years) at 3T with a slice thickness of 5 mm, a slice gap of 5 mm, and a linear slice order.
Objective: To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.
Materials And Methods: Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12).
The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B. Diffusion-weighted image data of eight healthy volunteers were acquired using five -values (0-600 s/mm) at rest and after muscle activation at 0.55 and 7 T.
View Article and Find Full Text PDFDiffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients.
View Article and Find Full Text PDFPurpose: To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2).
Methods: IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles.
Purpose: Broader clinical adoption of breast magnetic resonance imaging (MRI) faces challenges such as limited availability and high procedural costs. Low-field technology has shown promise in addressing these challenges. We report our initial experience using a next-generation scanner for low-field breast MRI at 0.
View Article and Find Full Text PDFObjectives: To evaluate whether artifacts on contrast-enhanced (CE) breast MRI maximum intensity projections (MIPs) might already be forecast before gadolinium-based contrast agent (GBCA) administration during an ongoing examination by analyzing the unenhanced T1-weighted images acquired before the GBCA injection.
Materials And Methods: This IRB-approved retrospective analysis consisted of n = 2884 breast CE MRI examinations after intravenous administration of GBCA, acquired with n = 4 different MRI devices at different field strengths (1.5 T/3 T) during clinical routine.
Background And Purpose: The current standard imaging-technique for creating postplans in seed prostate brachytherapy is computed tomography (CT), that is associated with additional radiation exposure and poor soft tissue contrast. To establish a magnetic resonance imaging (MRI) only workflow combining improved tissue contrast and high seed detectability, a deep learning-approach for automatic seed segmentation on MRI-scans was developed.
Material And Methods: Patients treated with I-125 seed brachytherapy received a postplan-CT and a 1.
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients.
View Article and Find Full Text PDFMaxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts.
View Article and Find Full Text PDFBackground: To assess morphological and functional alterations of the skeletal muscle in exercise-induced delayed onset muscle soreness (DOMS) using 7 Tesla (T) magnetic resonance imaging (MRI).
Methods: DOMS was induced in 16 volunteers performing an eccentric exercise protocol of the calf muscles of one randomized leg. 7 T MRI including T1w- (0.
Purpose: The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression.
Methods: Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable.
Background: Magnetic resonance imaging (MRI) provides high diagnostic sensitivity for breast cancer. However, MRI artifacts may impede the diagnostic assessment. This is particularly important when evaluating maximum intensity projections (MIPs), such as in abbreviated MRI (AB-MRI) protocols, because high image quality is desired as a result of fewer sequences being available to compensate for problems.
View Article and Find Full Text PDFObjective: Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task.
View Article and Find Full Text PDFPurpose: This research aims to develop a feature-guided deep learning approach and compare it with an optimized conventional post-processing algorithm in order to enhance the image quality of diffusion-weighted liver images and, in particular, to reduce the pulsation-induced signal loss occurring predominantly in the left liver lobe.
Methods: Data from 40 patients with liver lesions were used. For the conventional approach, the best-suited out of five examined algorithms was chosen.
Diagnostics (Basel)
March 2023
This study compares the diagnostic performance and image quality of single-shot turbo spin-echo DWI (tseDWI), standard readout-segmented DWI (rsDWI), and a modified rsDWI version (topupDWI) for cholesteatoma diagnostics. Thirty-four patients with newly suspected unilateral cholesteatoma were examined on a 1.5 Tesla MRI scanner.
View Article and Find Full Text PDFPurpose: Studies on intravoxel incoherent motion (IVIM) imaging in the liver have been carried out with different acquisition protocols. The number of acquired slices and the distances between slices can influence IVIM measurements due to saturation effects, but these effects have often been disregarded. This study investigated differences in biexponential IVIM parameters between two slice settings.
View Article and Find Full Text PDF