Fused deposition modeling (FDM) is well suited for microfluidic prototyping due to its low investment cost and a wide range of accessible materials. Nevertheless, most commercial FDM materials exhibit low chemical and thermal stability. This reduces the scope of applications and limits their use in research and development, especially for on-chip chemical synthesis.
View Article and Find Full Text PDFDirect laser writing has gained remarkable popularity by offering architectural control of 3D objects at submicron scales. However, it faces limitations when the fabrication of microstructures comprising multiple materials is desired. The generation processes of multi-material microstructures are often very complex, requiring meticulous alignment, as well as a series of step-and-repeat writing and development of the materials.
View Article and Find Full Text PDFSilicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented.
View Article and Find Full Text PDFThe growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP).
View Article and Find Full Text PDFMicrostructured molds are essential for fabricating various components ranging from precision optics and microstructured surfaces to microfluidics. However, conventional fabrication technology such as photolithography requires expensive equipment and a large number of processing steps. Here, we report a facile method to fabricate micromolds based on a reusable photoresponsive hydrogel: Uniform micropatterns are engraved into the hydrogel surface using photo masks under UV irradiation within a few minutes.
View Article and Find Full Text PDFTransparent polycrystalline magnesium aluminate (MAS) spinel ceramics are of great interest for industry and academia due to their excellent optical and mechanical properties. However, shaping of MAS is notoriously challenging especially on the microscale requiring hazardous etching methods. Therefore, a photochemically curable nanocomposite is demonstrated that can be structured using high-resolution two-photon lithography.
View Article and Find Full Text PDFDirect 3D printing of active microfluidic elements on PCB substrates enables high-speed fabrication of stand-alone microdevices for a variety of health and energy applications. Microvalves are key components of microfluidic devices and liquid metal (LM) microvalves exhibit promising flow control in microsystems integrated with PCBs. In this paper, we demonstrate LM microvalves directly 3D printed on PCB using advanced digital light processing (DLP).
View Article and Find Full Text PDFGallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface.
View Article and Find Full Text PDFThe popularity of two-photon direct laser writing in biological research is remarkable as this technique is capable of 3D fabrication of microstructures with unprecedented control, flexibility and precision. Nevertheless, potential impurities such as residual monomers and photoinitiators remaining unnoticed from the photopolymerization in the structures pose strong challenges for biological applications. Here, the first use of high-precision 3D microstructures fabricated from a one-component material system (without monomers and photoinitiators) as a 3D cell culture platform is demonstrated.
View Article and Find Full Text PDFUnlabelled: Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Polymeric shape-memory elastomers can recover to a permeant shape from any programmed deformation under external stimuli. They are mostly cross-linked polymeric materials and can be shaped by three-dimensional (3D) printing. However, 3D printed shape-memory polymers so far only exhibit elasticity above their transition temperature, which results in their programmed shape being inelastic or brittle at lower temperatures.
View Article and Find Full Text PDFPneumatic actuators are of great interest for device miniaturization, microactuators, soft robots, biomedical engineering, and complex control systems. Recently, multi-material actuators have become of high interest to researchers due to their comprehensive range of suitable applications. Three-dimensional (3D) printing of multi-material pneumatic actuators would be the ideal way to fabricate customized actuators, but so far, this is mostly limited to deposition-based methodologies, such as fused deposition modeling (FDM) or Polyjetting.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Maskless photolithography based on digital light processing (DLP) is an attractive technique for the rapid, flexible, and cost-effective fabrication of complex structures with arbitrary surface profiles on the microscale. In this work, we introduce a new material system for structure formation by DLP that is based on photoreactive polymers for the local and light-induced C,H-insertion cross-linking (CHic). This approach allows a simple and versatile generation of microstructures with a broad spectrum of geometries and chemistries irrespective of the nature of the chosen substrates and thus allows direct writing of surface functionalization patterns with high spatial control.
View Article and Find Full Text PDFTransparent ceramics like magnesium aluminate spinel (MAS) are considered the next step in material evolution showing unmatched mechanical, chemical and physical resistance combined with high optical transparency. Unfortunately, transparent ceramics are notoriously difficult to shape, especially on the microscale. Therefore, a thermoplastic MAS nanocomposite is developed that can be shaped by polymer injection molding at high speed and precision.
View Article and Find Full Text PDFDigital microfluidics (DMF) is a versatile platform for conducting a variety of biological and chemical assays. The most commonly used set-up for the actuation of microliter droplets is electrowetting on dielectric (EWOD), where the liquid is moved by an electrostatic force on a dielectric layer. Superhydrophobic materials are promising materials for dielectric layers, especially since the minimum contact between droplet and surface is key for low adhesion of biomolecules, as it causes droplet pinning and cross contamination.
View Article and Find Full Text PDFGallium-based liquid metal nonspherical droplets (plugs) have seen increasing demand recently mainly because their high aspect ratios make them beneficial for a wide range of applications, including microelectromechanical systems (MEMS), microfluidics, sensor technology, radio-frequency devices, actuators, and switches. However, reproducibility of the generation of such plugs, as well as precise control over their size, is yet challenging. In this work, a simple on-chip liquid metal plug generator using a commercially available 3D microprinter is presented and the plug generator in poly(dimethylsiloxane) is replicated via soft lithography.
View Article and Find Full Text PDFGlass is increasingly desired as a material for manufacturing complex microscopic geometries, from the micro-optics in compact consumer products to microfluidic systems for chemical synthesis and biological analyses. As the size, geometric, surface roughness, and mechanical strength requirements of glass evolve, conventional processing methods are challenged. We introduce microscale computed axial lithography (micro-CAL) of fused silica components, by tomographically illuminating a photopolymer-silica nanocomposite that is then sintered.
View Article and Find Full Text PDFPolystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes.
View Article and Find Full Text PDFIn recent years, additive manufacturing (AM) of glass has attracted great interest in academia and industry, yet it is still mostly limited to liquid nanocomposite-based approaches for stereolithography, two-photon polymerization, or direct ink writing. Melt-extrusion-based processes, such as fused deposition modeling (FDM), which will allow facile manufacturing of large thin-walled components or simple multimaterial printing processes, are so far inaccessible for AM of transparent fused silica glass. Here, melt-extrusion-based AM of transparent fused silica is introduced by FDM and fused feedstock deposition (FFD) using thermoplastic silica nanocomposites that are converted to transparent glass using debinding and sintering.
View Article and Find Full Text PDF