Publications by authors named "Frederik Igney"

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene.

View Article and Find Full Text PDF

Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein.

View Article and Find Full Text PDF

Regulatory T cells (Treg) play a critical role in controlling immune responses in diseases such as cancer or autoimmunity. Activated Treg express the membrane protein GARP (LRRC32) in complex with the latent form of the immunosuppressive cytokine TGF-β (L-TGF-β). In this study, we confirmed that active TGF-β was generated from its latent form in an integrin-dependent manner and induced TGF-β receptor signaling in activated human Treg.

View Article and Find Full Text PDF

Progressive accrual of senescent cells in aging and chronic diseases is associated with detrimental effects in tissue homeostasis. We found that senescent fibroblasts and epithelia were not only refractory to macrophage-mediated engulfment and removal, but they also paralyzed the ability of macrophages to remove bystander apoptotic corpses. Senescent cell-mediated efferocytosis suppression (SCES) was independent of the senescence-associated secretory phenotype (SASP) but instead required direct contact between macrophages and senescent cells.

View Article and Find Full Text PDF

One important prerequisite for developing a therapeutic monoclonal antibody is to evaluate its in vivo efficacy. We tested the therapeutic potential of an anti-CD96 antibody alone or in combination with an anti-PD-1 antibody in a mouse colon cancer model. Early anti-PD-1 treatment significantly decreased tumor growth and the combination with anti-CD96 further increased the therapeutic benefit, while anti-CD96 treatment alone had no effect.

View Article and Find Full Text PDF

Purpose: The ocular half-life of intravitreally (IVT) injected drugs is of major relevance for the suitability of a drug intended for chronic intraocular treatment, as the half-life determines the dosing frequency. Thus, half-life extension principles are very attractive as they can reduce the IVT dosing frequency. In this study, we investigated the ocular pharmacokinetics (PK) of the IVT injected Nanobody BI-X and whether the noncovalent binding of BI-X to vitreous albumin could increase its ocular half-life.

View Article and Find Full Text PDF

There is a rising need for biomaterial in dermatological research with regard to both quality and quantity. Research biobanks as organized collections of biological material with associated personal and clinical data are of increasing importance. Besides technological/methodological and legal aspects, the willingness to donate samples by patients and healthy volunteers is a key success factor.

View Article and Find Full Text PDF

The mammalian transient receptor potential (TRP) superfamily of cation channels is divided into six subfamilies based on sequence homology TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). The expression of these channels is especially abundant in sensory nerves, and there is increasing evidence demonstrating their existence in a broad range of cell types which are thought to play a key role in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These ion channels can be activated by a diverse range of chemical and physical stimuli.

View Article and Find Full Text PDF

A mixture of different fumaric acid esters (FAE) is established for systemic therapy of psoriasis, a frequent inflammatory skin disease. The main active compound of FAE, however, has not been identified so far, and the mechanisms of activity are only partially understood. We analyzed the impact of FAE on in vitro immune function and aimed to gain knowledge about the mode of action.

View Article and Find Full Text PDF

Inflammatory skin diseases have a high prevalence in Western countries and pharmaceutical companies spend increasing amounts of money to develop drugs for these disorders. However, their complex pathophysiology is only partially reflected in classical rodent models, limiting their predictivity, and new compounds frequently fail in clinical trials. Therefore, there is an urgent need for more predictive and reliable animal models.

View Article and Find Full Text PDF

Cancer development relies on a variety of mechanisms that facilitate tumor growth despite the presence of a functioning immune system. Understanding these mechanisms may foster novel therapeutic approaches for oncology and organ transplantation. By expression of the apoptosis-inducing protein CD95L (FasL, APO-1L, CD178), tumors may eliminate tumor-infiltrating lymphocytes and suppress anti-tumor immune responses, a phenomenon called "tumor counterattack".

View Article and Find Full Text PDF

Many tumors express CD95L (CD178, FasL, APO-1L) and may thus kill tumor-infiltrating lymphocytes, a phenomenon called tumor counterattack. However, presently it is not clear whether tumor counterattack is a relevant immune escape mechanism. To characterize the effect of CD95L expression of tumor cells on tumor-specific T cells, we established an in vitro system with TCR tg T cells and a model tumor antigen.

View Article and Find Full Text PDF

Differences between humans and mice often hamper the transfer of promising results from the bench to the clinic. For ethical reasons, research that involves patients is limited, and so there is an urgent need for models that mimic the human situation as closely as possible. In recent years, there has been considerable progress in generating humanized mouse models, and their application to drug discovery has proved fruitful.

View Article and Find Full Text PDF

Many tumors express the death ligand CD95L (CD178, APO-1L, FasL) and can kill activated T cells in vitro. This may enable the tumor cells to suppress anti-tumor immune responses, a phenomenon called "tumor counterattack". Preliminary evidence of tumor counterattack in human tumors exists.

View Article and Find Full Text PDF

Interactions between the immune system and malignant cells play an important role in tumorigenesis. Failure of the immune system to detect and reject transformed cells may lead to cancer development. Tumors use multiple mechanisms to escape from immune-mediated rejection.

View Article and Find Full Text PDF

Every cell in a multicellular organism has the potential to die by apoptosis, but tumour cells often have faulty apoptotic pathways. These defects not only increase tumour mass, but also render the tumour resistant to therapy. So, what are the molecular mechanisms of tumour resistance to apoptosis and how can we use this knowledge to resensitize tumour cells to cancer therapy?

View Article and Find Full Text PDF