Intrinsically disordered proteins can bind via the formation of highly disordered protein complexes without the formation of three-dimensional structure. Most naturally occurring proteins are levorotatory (L)-that is, made up only of L-amino acids-imprinting molecular structure and communication with stereochemistry. By contrast, their mirror-image dextrorotatory (D)-amino acids are rare in nature.
View Article and Find Full Text PDFEnzymes are indispensable biocatalysts for numerous industrial applications, yet stability, selectivity, and restricted substrate recognition present limitations for their use. Despite the importance of enzyme engineering in overcoming these limitations, success is often challenged by the intricate architecture of enzymes derived from natural sources. Recent advances in computational methods have enabled the de novo design of simplified scaffolds with specific functional sites.
View Article and Find Full Text PDFThe Arabidopsis thaliana DREB2A transcription factor interacts with the negative regulator RCD1 and the ACID domain of subunit 25 of the transcriptional co-regulator mediator (Med25) to integrate stress signals for gene expression, with elusive molecular interplay. Using biophysical and structural analyses together with high-throughput screening, we reveal a bivalent binding switch in DREB2A containing an ACID-binding motif (ABS) and the known RCD1-binding motif (RIM). The RIM is lacking in a stress-induced DREB2A splice variant with retained transcriptional activity.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2023
Broad conformational ensembles make intrinsically disordered proteins or regions entropically intriguing. Although methodologically challenging and understudied, emerging studies into their changes in conformational entropy (ΔS°) upon complex formation have provided both quantitative and qualitative insight. Recent work based on thermodynamics from isothermal titration calorimetry and NMR spectroscopy uncovers an expanded repertoire of regulatory mechanisms, where ΔS° plays roles in partner selection, state behavior, functional buffering, allosteric regulation, and drug design.
View Article and Find Full Text PDFFormation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model.
View Article and Find Full Text PDFIntrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R.
View Article and Find Full Text PDF