Publications by authors named "Frederik FleiSSner"

Fibrin is the fibrous protein network that comprises blood clots; it is uniquely capable of bearing very large tensile strains (up to 200%) due to multiscale force accommodation mechanisms. Fibrin is also a biochemical scaffold for numerous enzymes and blood factors. The biomechanics and biochemistry of fibrin have been independently studied.

View Article and Find Full Text PDF

Intermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations show that IF proteins undergo secondary structural changes to compensate mechanical loads, which is confirmed by experimental in vitro studies on IF hydrogels.

View Article and Find Full Text PDF

Collagen is the predominant protein in animal connective tissues and is widely used in tissue regeneration and other industrial applications. Marine organisms have gained interest as alternative, nonmammalian collagen sources for biomaterial applications because of potential medical and economic advantages. In this work, we present physicochemical and biofunctionality studies of acid solubilized collagen (ASC) from jellyfish (JASC), harvested from the Persian Gulf, compared with ASC from rat tail tendon (RASC), the industry-standard collagen used for biomedical research.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are short peptide sequences that can translocate across cellular plasma membranes and are thus potential delivery vectors for diagnostic and therapeutic applications. Many CPPs exhibit some sort of structural polymorphism, where the secondary structure of the peptide is altered strongly by its local environment, which is believed to facilitate membrane translocation and uptake. However, much less is known about the fate and structure of CPPs within cells largely due to measurement difficulty.

View Article and Find Full Text PDF

Following an injury, a blood clot must form at the wound site to stop bleeding before skin repair can occur. Blood clots must satisfy a unique set of material requirements; they need to be sufficiently strong to resist pressure from the arterial blood flow but must be highly flexible to support large strains associated with tissue movement around the wound. These combined properties are enabled by a fibrous matrix consisting of the protein fibrin.

View Article and Find Full Text PDF

Accumulation of fat in muscle tissue as intramyocellular lipids (IMCLs) is closely related to the development of insulin resistance and subsequent type 2 diabetes. Most IMCLs organize into lipid droplets (LDs), the fates of which are regulated by lipid droplet coat proteins. Perilipin 5 (PLIN5) is an LD coating protein, which is strongly linked to lipid storage in muscle tissue.

View Article and Find Full Text PDF

Previous studies have measured the distance between cells and the substratum at sites of adhesion via the emission of a fluorescent dye and waveguide methods. Here, we demonstrate a novel approach to measure the position of fluorescent dyes above a waveguide surface in the 10-200 nm distance range throughout an entire area, yielding a 2D dye distance map or a 3D contour plot. The dye is located in a multilayered Langmuir Blodgett (LB) film or in the plasma membrane of a cell.

View Article and Find Full Text PDF

Waveguide Evanescent Field Scattering (WEFS) microscopy is introduced as a new and simple tool for label-free, high contrast imaging of bacteria and bacteria sensors. Bacterial microcolonies and single bacteria were discriminated both by their bright field images and by their evanescent scattering intensity. By comparing bright field images with WEFS images, the proportion of planktonic: sessile (i.

View Article and Find Full Text PDF