In this paper, we present a chip-based C-band ODNP platform centered around an NMR-on-a-chip transceiver and a printed microwave (MW) Alderman-Grant (AG) coil with a broadband tunable frequency range of 528MHz. The printable ODNP probe is optimized for a high input-power-to-magnetic-field conversion-efficiency, achieving a measured ODNP enhancement factor of -151 at microwave power levels of 33.3dBm corresponding to 2.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2023
In this article, we present a portable NMR relaxometry system optimized for the point-of-care analysis of body liquids such as blood. The presented system is centered on an NMR-on-a-chip transceiver ASIC, a reference frequency generator with arbitrary phase control, and a custom-designed miniaturized NMR magnet with a field strength of 0.29 T and a total weight of 330 g.
View Article and Find Full Text PDFIn this paper, we present a custom-designed nuclear magnetic resonance (NMR) platform based on a broadband complementary metal-oxide-semiconductor (CMOS) NMR-on-a-chip transceiver and a synchronous reference signal generator, which features arbitrary phase control of the excitation pulse in combination with phase-coherent detection at a non-zero intermediate frequency (IF). Moreover, the presented direct digital synthesis (DDS)-based frequency generator enables a digital temperature compensation scheme similar to classical field locking without the need for additional hardware. NMR spectroscopy and relaxometry measurements verify the functionality of the proposed frequency reference and temperature compensation scheme as well as the overall state-of-the-art performance of the presented system.
View Article and Find Full Text PDFIn this paper, we review the latest developments in miniaturization of NMR systems with an emphasis on low-field NMR. We briefly cover the topics of magnet and coil miniaturization, elaborating on the advantages and disadvantages of miniaturized coils for different applications. The main part of the article is dedicated to progress in NMR electronics.
View Article and Find Full Text PDF