New energy systems such as all-solid-state battery (ASSB) technology are becoming increasingly important today. Recently, researchers have been investigating the transition from the lab-scale production of ASSB components to a larger scale. Poly(ethylene oxide) (PEO) is a promising candidate for the large-scale production of polymer-based solid electrolytes (SPEs) because it offers many processing options.
View Article and Find Full Text PDFWhile some promising materials for all-solid-state batteries are already extensively investigated in a lab scale, the transferability to mass production is still a limiting factor. β-lithium thiophosphate (β-LiPS) has good ionic conductivity and can be synthesized wet-chemically, which opens up the possibility for scale-up. For safe upscaling, the enthalpies of the synthesis steps need to be examined in order to handle exothermic and endothermic processes.
View Article and Find Full Text PDFA plastic crystalline electrolyte (PCE) consisting of 0.4 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in succinonitrile (SN) was blended with poly(ethylene oxide) (PEO), poly(vinylpyrrolidone) (PVP), poly(ethylene carbonate) (PEC), and polyacrylonitrile (PAN). The influences of the regarding polymers on thermomechanical properties of the PCE were studied systematically, utilizing differential scanning calorimetry, thermogravimetric analysis, and oscillation experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2019
Composites consisting of garnet-type LiLaZrO (LLZO) ceramic particles dispersed in a solid polymer electrolyte based on poly(ethylene oxide) (PEO) have recently been investigated as a possible electrolyte material in all solid state Li ion batteries. The interface between the two materials, that is, LLZO/PEO, is of special interest for the transport of lithium ions in the composite. For obtaining the desired high ionic conductivity, Li ions have to pass easily across this interface.
View Article and Find Full Text PDFLiLaZrO (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li/H cation exchange makes their processing even more difficult.
View Article and Find Full Text PDF