Publications by authors named "Frederick W Lipfert"

Lung cancer mortality (LCM) has been associated with smoking and air pollution. This article draws on smoking relationships to clarify air pollution relationships. We analyzed cohort and population-based smoking studies and identified effects of latency and cumulative exposures.

View Article and Find Full Text PDF

We analyzed racial differences in all-cause mortality rates associated with air pollution in a cohort of military veterans in which 37% of the 70,000 members identified as African-American (black). In this comprehensive analysis, spatial levels comprised individuals, zip-codes, and counties. Temporal levels comprised the 26-y follow-up period (1976-2001) and 4 subperiods.

View Article and Find Full Text PDF

The Veterans Cohort Mortality Study began in 1999 in collaboration with Washington University in St. Louis, comprising ~70,000 male military veterans. We published six research papers on this cohort, considering the dynamics of all-cause mortality as the subjects aged and environmental parameters changed.

View Article and Find Full Text PDF

Unlabelled: I searched the National Institutes of Health MEDLINE database through January 2017 for long-term studies of morbidity and air pollution and cataloged them with respect to cardiovascular, respiratory, cancer, diabetes, hospitalization, neurological, and pregnancy-birth endpoints. The catalog is presented as an online appendix. Associations with PM (particulate matter with an aerodynamic diameter <2.

View Article and Find Full Text PDF

The European Study of Cohorts for Air Pollution Effects (ESCAPE) is a13-nation study of long-term health effects of air pollution based on subjects pooled from up to 22 cohorts that were intended for other purposes. Twenty-five papers have been published on associations of various health endpoints with long-term exposures to NOx, NO2, traffic indicators, PM10, PM2.5 and PM constituents including absorbance (elemental carbon).

View Article and Find Full Text PDF

Susceptible sub-populations with existing disease have exhibited stronger relationships between air quality and mortality in time-series studies, but their associated life expectancies have largely been overlooked. Murray and Nelson developed a new time-series model that estimated a small unobserved (frail) sub-population and their resulting life expectancies in Philadelphia, including environment relationships. As a further example in a different geographic area, we used this model with 1987-2000 daily mortality data in Chicago and found a stable frail population at risk of ∼900 persons with a mean life expectancy of ∼11 days; fewer than two daily deaths were associated with air pollution.

View Article and Find Full Text PDF

Background: Many publications estimate short-term air pollution-mortality risks, but few estimate the associated changes in life-expectancies.

Objective And Methods: We present a new methodology for analyzing time series of health effects, in which prior frailty is assumed to precede short-term elderly nontraumatic mortality. The model is based on a subpopulation of frail individuals whose entries and exits (deaths) are functions of daily and lagged environmental conditions: ambient temperature/season, airborne particles, and ozone.

View Article and Find Full Text PDF

Epidemiological studies find that elderly, susceptible, and previously impaired individuals are more sensitive to transient air pollution exposures than healthy persons. However, any associated changes in life expectancy remain largely unresolved. Murray and Nelson published a model of daily mortality and air pollution that addresses mortality displacement or harvesting by directly considering population dynamics on the basis of the assumption that a period of illness or frailty precedes most elderly deaths.

View Article and Find Full Text PDF

For this paper, we considered relationships between mortality, vehicular traffic density, and ambient levels of 12 hazardous air pollutants, elemental carbon (EC), oxides of nitrogen (NOx), sulfur dioxide (SO2), and sulfate (SO4(2-)). These pollutant species were selected as markers for specific types of emission sources, including vehicular traffic, coal combustion, smelters, and metal-working industries. Pollutant exposures were estimated using emissions inventories and atmospheric dispersion models.

View Article and Find Full Text PDF

This work examines various metrics and models that have been used to estimate long-term health effects of exposure to vehicular traffic. Such health impacts may include effects of air pollution due to emissions of combustion products and from vehicle or roadway wear, of noise, stress, or from socioeconomic effects associated with preferred residential locations. Both categorical and continuous exposure metrics are considered, typically for distances between residences and roadways, or for traffic density or intensity.

View Article and Find Full Text PDF

This article addresses the importance of blood pressure as a covariate in studies of long-term associations between air quality and mortality. We focus on a cohort of about 50,000 U.S.

View Article and Find Full Text PDF