Efficient separation of minor actinides and lanthanides from used nuclear fuel could potentially lead to the development of sustainable nuclear fuel cycles. Herein, we report an in-depth study on selectivity and speciation in the extraction of the trivalent minor actinide Am and rare earth metal ions with a pre-organized phenanthroline-based ligand in a hydrocarbon solvent system relevant to nuclear fuel reprocessing. The 1 : 1 and 2 : 1 ligand-to-metal complexes dominate the speciation in the organic solvent over a range of ligand-to-metal concentrations, as evidenced by experimental data and supported by modeling.
View Article and Find Full Text PDFWe report a new family of preorganized bis-lactam-1,10-phenanthroline (BLPhen) complexants that possess both hard and soft donor atoms within a convergent cavity and show unprecedented extraction strength for the trivalent f-block metal ions. BLPhen ligands with saturated and unsaturated δ-lactam rings have notable differences in their affinity and selectivity for Am(III) over Eu(III), with the latter being the most selective mixed N,O-donor extractant of Am(III) reported to date. Saturated BLPhen was crystallized with five Ln(III) nitrates to form charge-neutral 1:1 complexes in the solid state.
View Article and Find Full Text PDF