Publications by authors named "Frederick S Meyer"

Changes in the viscoelasticity of the electric double layer following steps in electrode potential were studied with an electrochemical quartz crystal microbalance (EQCM). The overtone scaling was the same as in gravimetry (-Δf/n≈ const with Δf the frequency shift and n the overtone order). Changes in half-bandwidth were smaller than changes in frequency.

View Article and Find Full Text PDF

A quartz crystal microbalance (QCM) is described, which simultaneously determines resonance frequency and bandwidth on four different overtones. The time resolution is 10 milliseconds. This fast, multi-overtone QCM is based on multi-frequency lockin amplification.

View Article and Find Full Text PDF

An electrochemical quartz crystal microbalance is described, which achieves a time resolution down to 100 μs. Accumulation and averaging over a few hours bring the noise down to about 30 mHz. The application examples are pH-driven viscosity changes in albumin solutions.

View Article and Find Full Text PDF