The chemical doping reaction of P3HT with F-TCNQ was studied by optical absorption spectroscopy, atomic force microscopy, and Kelvin probe force microscopy. We demonstrate that P3HT aggregation preferentially occurs before the actual charge transfer step takes place, emphasizing the impact of morphology on the chemical doping reaction of conjugated polymers at the molecular level.
View Article and Find Full Text PDFJ Mater Chem C Mater
June 2017
The morphological effects of regioregular poly(3-hexylthiophene) (P3HT) on its p-doping kinetics with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F-TCNQ) in solution are studied using optical absorption spectroscopy and stopped-flow technique. Two morphological forms, solubilized (s-P3HT) and nanowhiskers (nw-P3HT), are investigated. Both P3HT solubilized and aggregated solutions show similar characteristic near-IR absorption bands for integer charge transfer products with F-TCNQ.
View Article and Find Full Text PDFA cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.
View Article and Find Full Text PDFCoatings prepared from titania-thiol-ene compositions were found to be both self-cleaning, as measured by changes in water contact angle, and photocatalytic toward the degradation of an organic dye. Stable titania-thiol-ene dispersions at approximately 2 wt % solids were prepared using a combination of high-shear mixing and sonication in acetone solvent from photocatalytic titania, trisilanol isobutyl polyhedral oligomeric silsesquioxane (POSS) dispersant, and select thiol-ene monomers, i.e.
View Article and Find Full Text PDFAn eumelanin-inspired core derived from the natural product, vanillin (vanilla bean extract) was utilized for the synthesis of eumelanin-inspired small molecules and polymer via Sonogashira cross coupling. The materials demonstrate that the methyl 4,7-dibromo-5,6-dimethoxy-N-methyl-1H-indole-2-carboxylate core can serve as a new building block for organic semiconductors.
View Article and Find Full Text PDF