We present the first thermospheric wind measurements using a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer and the oxygen red-line nightglow emission. The ground-based observations were made from Washington, DC and include simultaneous calibration measurements to track and correct instrument drifts. Even though the measurements were made under challenging thermal and light pollution conditions, they are of good quality with photon statistics uncertainties between about three and twenty-nine meters per second, depending on the nightglow intensity.
View Article and Find Full Text PDFWe describe the design, fabrication and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations of the O[1D] 630 nm emission. The monolithic interferometer has no moving parts, a large étendue, relaxed fabrication and alignment tolerances and can measure multiple emission lines simultaneously. Laboratory measurements indicate that the design resolution and étendue were achieved and that thermal drifts can be determined with sufficient precision for geophysical applications.
View Article and Find Full Text PDFDesign and performance parameters for a broadband, high-resolution spatial heterodyne spectrometer (SHS) are reported. The Mark 1 SHS achieves more than a factor of 5 in continuous wavenumber coverage with a design resolving power in the hundreds of thousands.
View Article and Find Full Text PDF