Publications by authors named "Frederick J Coughlin"

Two strategies for the synthesis of configurationally stable twisted polycyclic aromatic compounds (PACs) were pursued. The first approach employed dissymmetrically positioned 1-naphthyl substituents to bias the direction of twist in highly substituted PACs. 2,3-Bis(1-naphthyl)-1,4-diphenyltriphenylene (7) was prepared, and its meso cis-dinaphthyl and enantiomeric trans-dinaphthyl isomers were resolved by preparative supercritical fluid chromatography (SFC) on chiral supports.

View Article and Find Full Text PDF

A family of heteroleptic (C;N)2Ir(acac) and homoleptic fac-Ir(C;N)3 complexes have been synthesized and their photophysical properties studied (where C;N = a substituted 2-phenylpyridine and acac = acetylacetonate). The neutral Delta and Lambda complexes were separated with greater than 95% enantiomeric purity by chiral supercritical fluid chromatography, and the solution circular dichroism and circularly polarized luminescence spectra for each of the enantio-enriched iridium complexes were obtained. The experimentally measured emission dissymmetries (gem) for this series compared well with predicted values provided by time-dependent density functional theory calculations.

View Article and Find Full Text PDF

Time-dependent density functional theory (TD-DFT) is applied to the UV-vis absorption and circular dichroism (CD) spectra of a series of transition metals (M=Ru, Zn, Fe) complexed with an enantiopure hemicage ligand, (-)-(5R,5'R,5' 'R,7R,7'R,7' 'R,8S,8'S,8' 'S)-8,8',8' '-[(2,4,6-trimethyl-1,3,5-benzenetriyl)tris(methylene)]tris[5,6,7,8-tetrahydro-6,6-dimethyl-3-(2-pyridinyl)-5,7-methanoisoquinoline (1). The electronic spectra of the Ru and Fe complexes contain two regions, one featuring low-energy 1MLCT transitions and the other higher energy 1LC transitions; the Zn analog possesses only the 1LC transitions due to its filled 3d shell. TD-DFT is able to identify correctly these transitions in the spectra, as well as to reproduce experimental spectra accurately, with regard to both the transition energies and the relative intensities of the different transitions.

View Article and Find Full Text PDF

A series of bis-phenylpyridine, bis-aquo iridium(III) complexes is herein shown to robustly and efficiently catalyze the oxidation of water to dioxygen in the presence of a sacrificial oxidant. Through substitution on the cyclometalating ligands of these complexes, it is shown that a broad range of oxidation potentials can be achieved within this class of catalyst. Parallel, dynamic monitoring of oxygen evolution, made possible by equipping reaction vessels with pressure-voltage transducers, facilitates correlation of these complexes' ionization potentials with their respective activity toward water oxidation.

View Article and Find Full Text PDF

Two enantiomers of a new 4,5-pineno-2,2'-bipyridine ligand were synthesized and subsequently incorporated into hemicage ligands through a phenyl linker to yield ligands (+)-L1 and (-)-L1 or through a mesityl linker to yield ligands (+)-L2 and (-)-L2. Complexation of these ligands to Ru(II) afforded diastereomerically pure Delta and Lambda isomers, as verified through circular dichroism and circularly polarized luminescence spectroscopy. Ligands (+)-L2 and (-)-L2 were further coordinated to Zn(II) to form a complex with intriguing photophysical properties.

View Article and Find Full Text PDF