Publications by authors named "Frederick H Neill"

Following recent reports of norovirus replication in salivary gland cells, we examined whether the prototype norovirus strain, Norwalk virus (GI.1), could be detected in the saliva of 21 experimentally infected persons. Viral RNA was not detected in saliva 2 and 7 days after challenge despite high levels being present in feces.

View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoVs) are key contributors to diarrhea outbreaks worldwide, and studying them was difficult due to a lack of effective culture methods.
  • Recent advancements in cultivating various HuNoV strains in human intestinal enteroids (HIEs) have greatly improved research into their replication and disease mechanisms.
  • The research showed that different types of HIEs, particularly those from small intestines and genetically modified lines, have varying levels of susceptibility to HuNoV infection, revealing insights into how these viruses affect human health.
View Article and Find Full Text PDF

Background: Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults.

View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoVs) are RNA viruses responsible for acute gastroenteritis, and many strains, like GII.3, require bile acids (BA) for infection in intestinal cells.
  • The study found that inhibiting the S1PR2 receptor reduces GII.3 infection, indicating that this receptor plays a crucial role in the infection process across different strains and segments of the small intestine.
  • Results showed that while GII.3 and other BA-dependent strains rely on S1PR2 for infection, the GII.4 strain does not, highlighting strain-specific mechanisms in HuNoV infection.
View Article and Find Full Text PDF

Background: The in vitro cultivation of human noroviruses allows a comparison of antibody levels measured in neutralization and histo-blood group antigen (HBGA)-blocking assays.

Methods: Serum samples collected during the evaluation of an investigational norovirus vaccine (HIL-214 [formerly TAK-214]) were assayed for neutralizing antibody levels against the vaccine's prototype Norwalk virus/genogroup I, genotype 1 (GI.1) (P1) virus strain.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.

View Article and Find Full Text PDF

Unlabelled: Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research.

View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoVs) are diverse RNA viruses that cause viral gastroenteritis, with some strains needing bile acids (BA) for infection, while others, like the pandemic GII.4, do not.
  • In this study, the researchers examined the role of the G-protein coupled receptor S1PR2 in the infection process of various HuNoV strains, discovering that inhibiting S1PR2 reduced the infection of BA-dependent strains but not BA-independent strains like GII.4.
  • The findings suggest that BA-dependent HuNoVs use S1PR2 activation to infect different segments of the small intestine, highlighting the complexity of norovirus infections and the potential for strain-specific targeting in treatment.
View Article and Find Full Text PDF

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation.

View Article and Find Full Text PDF

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs GII.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within three days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation.

View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoV) are the main cause of gastroenteritis globally, and understanding the immune response can help in vaccine development.
  • Researchers used a technique called Jun-Fos-assisted phage display to map antibody targets in people infected with HuNoV, uncovering both unique and shared epitopes across different proteins.
  • The study found that some epitopes were present before the infection, indicating prior exposure, while new epitope signals emerged post-infection and persisted for at least 180 days, suggesting the immune system’s adaptability and the possibility of cross-reactive antibodies between different HuNoV genotypes.
View Article and Find Full Text PDF

Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Norovirus infections can cause acute gastroenteritis, which may negatively impact the gut microbiome.
  • A study was conducted to evaluate how microbiome diversity correlates with norovirus infection and secretor status in patients from Veterans Affairs medical centers.
  • Results showed that patients with acute gastroenteritis had lower alpha diversity in their microbiomes, while other comparison groups had similar diversity levels.
View Article and Find Full Text PDF

Human norovirus (HuNoV) is the leading cause of epidemic and sporadic acute gastroenteritis worldwide. HuNoV transmission occurs predominantly by direct person-to-person contact, and its health burden is associated with poor hand hygiene and a lack of effective antiseptics and disinfectants. Specific therapies and methods to prevent and control HuNoV spread previously were difficult to evaluate because of the lack of a cell culture system to propagate infectious virus.

View Article and Find Full Text PDF

Laboratory cultivation of viruses is critical for determining requirements for viral replication, developing detection methods, identifying drug targets, and developing antivirals. Several viruses have a history of recalcitrance towards robust replication in laboratory cell lines, including human noroviruses and hepatitis B and C viruses. These viruses have tropism for tissue components of the enterohepatic circulation system: the intestine and liver, respectively.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic acute gastroenteritis worldwide. We previously demonstrated human intestinal stem cell-derived enteroids (HIEs) support cultivation of several HuNoV strains. However, HIEs did not support virus replication from every HuNoV-positive stool sample, which led us to test and optimize new medium conditions, identify characteristics of stool samples that allow replication, and evaluate consistency of replication over time.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of nonbacterial gastroenteritis worldwide. Histo-blood group antigen (HBGA) expression is an important susceptibility factor for HuNoV infection based on controlled human infection models and epidemiologic studies that show an association of secretor status with infection caused by several genotypes. The fucosyltransferase 2 gene () affects HBGA expression in intestinal epithelial cells; secretors express a functional FUT2 enzyme, while nonsecretors lack this enzyme and are highly resistant to infection and gastroenteritis caused by many HuNoV strains.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g.

View Article and Find Full Text PDF

Background: The development of an in vitro cultivation system for human noroviruses allows the measurement of neutralizing antibody levels.

Methods: Serum neutralizing antibody levels were determined using a GII.4/Sydney/2012-like virus in human intestinal enteroids in samples collected before and 4 weeks after administration of an investigational norovirus vaccine and were compared with those measured in histo-blood group antigen (HBGA)-blocking assays.

View Article and Find Full Text PDF

Noroviruses, in the genus , are a significant cause of viral gastroenteritis in humans and animals. For almost 50 years, the lack of a cultivation system for human noroviruses (HuNoVs) was a major barrier to understanding virus biology and the development of effective antiviral strategies. This review presents a historical perspective of the development of a cultivation system for HuNoVs in human intestinal epithelial cell cultures.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. A virus-like particle (VLP) candidate vaccine induces the production of serum histo-blood group antigen (HBGA)-blocking antibodies, the first identified correlate of protection from HuNoV gastroenteritis. Recently, virus-specific IgG memory B cells were identified to be another potential correlate of protection against HuNoV gastroenteritis.

View Article and Find Full Text PDF

The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report the successful cultivation of multiple HuNoV strains in enterocytes in stem cell-derived, nontransformed human intestinal enteroid monolayer cultures.

View Article and Find Full Text PDF