Publications by authors named "Frederick Grady"

Article Synopsis
  • After a heart attack (myocardial infarction), adult mammals experience damage and heart failure, while neonatal mammals can regenerate their hearts without significant scarring.
  • In a study involving Wistar rat neonates and adults, neonatal rats showed no fibrosis or changes in heart function after heart attacks, unlike adult rats that developed significant damage and dysfunction.
  • The findings reveal that neonatal hearts preserve native mechanical properties, suggesting potential avenues for understanding heart regeneration and developing treatments for heart failure in adults.
View Article and Find Full Text PDF

The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E.

View Article and Find Full Text PDF

Mitral regurgitation (MR) due to annular dilation occurs in a variety of mitral valve diseases and is observed in many patients with heart failure due to mitral regurgitation. To understand the biomechanics of MR and ultimately design an optimized annuloplasty ring, a representative disease model with asymmetric dilation of the mitral annulus is needed. This work shows the design and implementation of a 3D-printed valve dilation device to preferentially dilate the posterior mitral valve annulus.

View Article and Find Full Text PDF

Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer-nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions.

View Article and Find Full Text PDF