Publications by authors named "Frederick E Pinkerton"

Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

View Article and Find Full Text PDF

The first example of a mixed-metal amidoborane Na(2)Mg(NH(2)BH(3))(4) has been successfully synthesized. It forms an ordered arrangement in cation coordinations, i.e.

View Article and Find Full Text PDF

Enhanced kinetic performance and reversibility have been achieved with uncatalyzed NaAlH4 by incorporation into nanoporous carbon aerogel. Aerogel with a pore size distribution peaked at 13 nm and a pore volume of 0.8 cm(3) g(-1) was filled with NaAlH4 to 94% capacity by melt infusion at 189 degrees C under 183 bar H(2) gas overpressure.

View Article and Find Full Text PDF

The use of Li3BN2H8 complex hydride as a practical hydrogen storage material is limited by its high desorption temperature and poor reversibility. While certain catalysts have been shown to decrease the dehydrogenation temperature, no significant improvement in reversibility has been reported thus far. In this study, we demonstrated that tuning the particle size to the nanometer scale by infiltration into nanoporous carbon scaffolds leads to dramatic improvements in the reversibility of Li3BN2H8.

View Article and Find Full Text PDF

Mobile applications of hydrogen power have long demanded new solid hydride materials with large hydrogen storage capacities. We report synthesis of a new quaternary hydride having the approximate composition Li(3)BN(2)H(8) with 11.9 wt % theoretical hydrogen capacity.

View Article and Find Full Text PDF

We recently reported the synthesis of a new quaternary hydride in the lithium-boron-nitrogen-hydrogen quaternary phase diagram with the approximate composition LiB0.33N0.67H2.

View Article and Find Full Text PDF