In this study, a novel experimental setup is proposed for which a column filled with glass beads and parallelepiped-shaped limestone beams is used to reconstruct a multiple fracture limestone media. The proposed setup produces asymmetric breakthrough curves (BTCs) that are consistent with the shape expected from the past field and lab-scale studies. Three transport experiments have been conducted under fast, medium, and slow flow velocity conditions.
View Article and Find Full Text PDFMagnetic Resonance Sounding (MRS) measurements are acquired at 16 stations in the Strengbach headwater catchment (Vosges Mountains - France). These data, rendering the vertical distribution of water contents in the subsurface, are used to show their potential in conditioning a hydrological model of the catchment, as described in the article "Magnetic resonance sounding measurements as posterior information to condition hydrological model parameters: Application to a hard-rock headwater catchment" - Journal of Hydrology (2020). Acquisition protocols follow a free induction decay scheme.
View Article and Find Full Text PDFWe present a modeling exercise of solute transport and biodegradation in a coarse porous medium widely colonized by a biofilm phase. Tracer tests in large laboratory columns using both conservative (fluorescein) and biodegradable (nitrate) solutes are simulated by means of a dual flowing continuum approach. The latter clearly distinguishes concentrations in a flowing porous phase from concentrations conveyed in the biofilm.
View Article and Find Full Text PDFMatrix diffusion in saturated rocks with very low permeability is one of the major mechanisms of solute transport. Laboratory out-diffusion experiments on rock samples may provide an estimate of the bulk diffusion coefficient. However, numerous results have shown that this average parameter does not really depict the complex mechanism of diffusion as a function of the internal heterogeneity of crystalline rocks.
View Article and Find Full Text PDF