Publications by authors named "Frederick D Day-Lewis"

The issues associated with long-screened wells (LSWs) (and open boreholes) at contaminated sites are well documented in the groundwater literature but are still not fully appreciated in practice. As established in seminal and review papers going back over three decades, the interpretation of sampling results from LSWs is challenging in the presence of vertical hydraulic gradients and borehole flow; furthermore, LSWs allow for vertical redistribution of contamination between aquifer layers. Acknowledgment of these issues has led to the development of new technologies and well designs to enable discrete-zone monitoring (DZM), yet LSWs remain common for many reasons, for example, as multipurpose wells, for geophysical logging, and (or) as legacy installations.

View Article and Find Full Text PDF

Geophysical methods can provide three-dimensional (3D), spatially continuous estimates of soil moisture. However, point-to-point comparisons of geophysical properties to measure soil moisture data are frequently unsatisfactory, resulting in geophysics being used for qualitative purposes only. This is because (1) geophysics requires models that relate geophysical signals to soil moisture, (2) geophysical methods have potential uncertainties resulting from smoothing and artifacts introduced from processing and inversion, and (3) results from multiple geophysical methods are not easily combined within a single soil moisture estimation framework.

View Article and Find Full Text PDF

Assimilating recent observations improves model outcomes for real-time assessments of groundwater processes. This is demonstrated in estimating time-varying recharge to a shallow fractured-rock aquifer in response to precipitation. Results from estimating the time-varying water-table altitude (h) and recharge, and their error covariances, are compared for forecasting, filtering, and fixed-lag smoothing (FLS), which are implemented using the Kalman Filter as applied to a data-driven, mechanistic model of recharge.

View Article and Find Full Text PDF

Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities.

View Article and Find Full Text PDF

New approaches are needed to assess contaminant mass based on samples from long-screened wells and open boreholes (LSW&OB). The interpretation of concentration samples collected in LSW&OB is complicated in the presence of vertical flow within the well. In the absence of pumping (i.

View Article and Find Full Text PDF

We present and demonstrate a recursive-estimation framework to infer groundwater/surface-water exchange based on temperature time series collected at different vertical depths below the sediment/water interface. We formulate the heat-transport problem as a state-space model (SSM), in which the spatial derivatives in the convection/conduction equation are approximated using finite differences. The SSM is calibrated to estimate time-varying specific discharge using the Extended Kalman Filter (EKF) and Extended Rauch-Tung-Striebel Smoother (ERTSS).

View Article and Find Full Text PDF

A state-space model (SSM) of infiltration estimates daily groundwater recharge using time-series of groundwater-level altitude and meteorological inputs (liquid precipitation, snowmelt, and evapotranspiration). The model includes diffuse and preferential flow through the unsaturated zone, where preferential flow is a function of liquid precipitation and snowmelt rates and a threshold rate, above which there is direct recharge to the water table. Model parameters are estimated over seasonal periods and the SSM is coupled with the Kalman Filter (KF) to assimilate recent observations (hydraulic head) and meteorological inputs into recharge estimates.

View Article and Find Full Text PDF

Groundwater/surface-water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g.

View Article and Find Full Text PDF

There is a growing need to assess long-term impacts of active remediation strategies on treated aquifers. A variety of biogeochemical alterations can result from interactions of the amendment with the aquifer, conceivably leading to a geophysical signal associated with the long-term alteration of an aquifer. This concept of post-remediation geophysical assessment was investigated in a shallow, chlorinated solvent-contaminated aquifer six to eight years after amendment delivery.

View Article and Find Full Text PDF

A new version of the computer program FLASH (Flow-Log Analysis of Single Holes) is presented for the analysis of borehole vertical flow logs to estimate fracture (or layer) transmissivities and far-field hydraulic heads. The program is written in R, an open-source environment. All previous features have been retained and new features incorporated including more rigorous parameter estimation, uncertainty analysis, and improved data import.

View Article and Find Full Text PDF

Fiber-optic distributed temperature sensing (FO-DTS) has proven to be a transformative technology for the hydrologic sciences, with application to diverse problems including hyporheic exchange, groundwater/surface-water interaction, fractured-rock characterization, and cold regions hydrology. FO-DTS produces large, complex, and information-rich datasets. Despite the potential of FO-DTS, adoption of the technology has been impeded by lack of tools for data processing, analysis, and visualization.

View Article and Find Full Text PDF

River to floodplain hydrologic connectivity is strongly enhanced by beaver- (Castor canadensis) engineered channel water diversions. The hydroecological impacts are wide ranging and generally positive, however, the hydrogeochemical characteristics of beaver-induced flowpaths have not been thoroughly examined. Using a suite of complementary ground- and drone-based heat tracing and remote sensing methodology we characterized the physical template of beaver-induced floodplain exchange for two alluvial mountain streams near Crested Butte, Colorado, USA.

View Article and Find Full Text PDF

The characterization of pore-space connectivity in porous media at the sediment/water interface is critical in understanding contaminant transport and reactive biogeochemical processes in zones of groundwater and surface-water exchange. Previous in situ studies of dual-domain (i.e.

View Article and Find Full Text PDF

Identifying and quantifying groundwater exchange is critical when considering contaminant fate and transport at the groundwater/surface-water interface. In this paper, areally distributed temperature and point seepage measurements are used to efficiently assess spatial and temporal groundwater discharge patterns through a glacial-kettle lakebed area containing a zero-valent iron permeable reactive barrier (PRB). Concern was that the PRB was becoming less permeable with time owing to biogeochemical processes within the PRB.

View Article and Find Full Text PDF

Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g.

View Article and Find Full Text PDF

Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models.

View Article and Find Full Text PDF
Article Synopsis
  • Geophysical methods are becoming increasingly important for understanding and monitoring fractured-rock aquifers, aiding groundwater remediation efforts despite challenges posed by their complexity.
  • Many remediation professionals face difficulties as geophysical results often require interpretation to relate them to critical properties, leading to a need for more practical demonstrations of these methods in real-life scenarios.
  • The article aims to enhance the use of geophysical methods by providing a summary of these techniques, reviewing case studies, and discussing best practices for method selection based on modeling and decision support tools.
View Article and Find Full Text PDF

A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S.

View Article and Find Full Text PDF

Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring.

View Article and Find Full Text PDF

Groundwater discharge locations along the upper Delaware River, both discrete bank seeps and diffuse streambed upwelling, may create thermal niche environments that benefit the endangered dwarf wedgemussel (Alasmidonta heterodon). We seek to identify whether discrete or diffuse groundwater inflow is the dominant control on refugia. Numerous springs and seeps were identified at all locations where dwarf wedgemussels still can be found.

View Article and Find Full Text PDF

A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S.

View Article and Find Full Text PDF

A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers.

View Article and Find Full Text PDF