We present a general adaptive latent space tuning approach for improving the robustness of machine learning tools with respect to time variation and distribution shift. We demonstrate our approach by developing an encoder-decoder convolutional neural network-based virtual 6D phase space diagnostic of charged particle beams in the HiRES ultrafast electron diffraction (UED) compact particle accelerator with uncertainty quantification. Our method utilizes model-independent adaptive feedback to tune a low-dimensional 2D latent space representation of ∼1 million dimensional objects which are the 15 unique 2D projections (x,y),.
View Article and Find Full Text PDFMachine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded.
View Article and Find Full Text PDF