Publications by authors named "Frederick Bernardot"

In the semiconducting perovskite materials family, the cesium-lead-chloride compound (CsPbCl) supports robust excitons characterized by a blue-shifted transition and the largest binding energy, thus presenting a high potential to achieve demanding solid-state room-temperature photonic or quantum devices. Here we study the fundamental emission properties of cubic-shaped colloidal CsPbCl nanocrystals (NCs), examining in particular individual NC responses using micro-photoluminescence in order to unveil the exciton fine structure (EFS) features. Within this work, NCs with average dimensions ⟨⟩ ≈ 8 nm (α = , , ) are studied with a level of dispersity in their dimensions that allows disentangling the effects of size and shape anisotropy in the analysis.

View Article and Find Full Text PDF

In this work, we studied, at low temperature, the coherent evolution of the localized electron and hole spins in a polycrystalline film of CH3NH3PbI3 (MAPI) by using a picosecond-photo-induced Faraday rotation technique in an oblique magnetic field. We observed an unexpected anisotropy for the electron and hole spin. We determined the electron and hole Landé factors when the magnetic field was applied in the plane of the film and perpendicular to the exciting light, denoted as transverse ⟂ factors, and when the magnetic field was applied perpendicular to the film and parallel to the exciting light, denoted as parallel ∥ factors.

View Article and Find Full Text PDF

We investigated the coherent evolution of the electronic spin at low temperature in high-quality CHNHPbI polycrystalline films by picosecond-resolved photoinduced Faraday rotation. We show that this coherent evolution can be tuned by choosing the pump-probe energy within the lowest optical-absorption band, and we explain it as the result of two main contributions: the localized electron and the localized hole. Their corresponding amplitude ratios are constant across the lowest absorption band-an observation which disqualifies a free exciton from being at the origin of the electronic spin coherent evolution.

View Article and Find Full Text PDF

We synthesized strongly anisotropic CsPbBr nanocrystals with very narrow emission and absorption lines associated to confinement effects along one or two dimensions, called respectively nanoplatelets (NPLs) and nanosticks (NSTs). Transmission Electron Microscopy (TEM) images, absorption and photoluminescence (PL) spectra taken at low temperature are very precise tools to determine which kind of confinement has to be considered and to deduce the shape, the size and the thickness of nanocrystals under focus. We show that the energy of the band-edge absorption and PL peaks versus the inverse of the square of the NPL thickness has a linear behaviour from 11 monolayers (MLs) i.

View Article and Find Full Text PDF

Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials.

View Article and Find Full Text PDF

All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry).

View Article and Find Full Text PDF