Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities.
View Article and Find Full Text PDFImmune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80).
View Article and Find Full Text PDFTargeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide () or hydrazone (-) iron-binding groups.
View Article and Find Full Text PDFThe mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice.
View Article and Find Full Text PDFCOVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19.
View Article and Find Full Text PDFInterleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche.
View Article and Find Full Text PDFThe tail of Caudovirales bacteriophages serves as an adsorption device, a host cell wall-perforating machine, and a genome delivery pathway. In Siphoviridae, the assembly of the long and flexible tail is a highly cooperative and regulated process that is initiated from the proteins forming the distal tail tip complex. In Gram-positive-bacterium-infecting siphophages, the distal tail (Dit) protein has been structurally characterized and is proposed to represent a baseplate hub docking structure.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2011
The structure of a 468 kDa peptidase complex from the hyperthermophile Pyrococcus horikoshii has been solved at 1.9 A resolution. The monomer contains the M42 peptidase typical catalytic domain, and a dimerization domain that allows the formation of dimers that assemble as a 12-subunit self-compartmentalized tetrahedron, similar to those described for the TET peptidases.
View Article and Find Full Text PDFLactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radiodurans (a mesophilic bacterium) and Thermus thermophilus (a hyperthermophilic bacterium).
View Article and Find Full Text PDFIntense synchrotron radiation produces specific structural and chemical damage to crystalline proteins even at 100 K. Carboxyl groups of acidic residues (Glu, Asp) losing their definition is one of the major effects observed. Here, the susceptibilities to X-ray damage of acidic residues in tetrameric malate dehydrogenase from Haloarcula marismortui are investigated.
View Article and Find Full Text PDFCellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data.
View Article and Find Full Text PDFThe crystal structure of the sulfolactate dehydrogenase from the hyperthermophilic and methanogenic archaeon Methanocaldococcus jannaschii was solved at 2.5 A resolution (PDB id. 1RFM).
View Article and Find Full Text PDFThe crystal structure of malate dehydrogenase from the hyperthermophilic archaeon Archeoglobus fulgidus, in complex with its cofactor NAD, was solved at 2.9A resolution. The crystal structure shows a compact homodimer with one coenzyme bound per subunit.
View Article and Find Full Text PDFThe three-dimensional crystal structure of the (R207S, R292S) mutant of malate dehydrogenase from Haloarcula marismortui was solved at 1.95A resolution in order to determine the role of salt bridges and solvent ions in halophilic adaptation and quaternary structure stability. The mutations, located at the dimer-dimer interface, disrupt two inter-dimeric salt bridge clusters that are essential for wild-type tetramer stabilisation.
View Article and Find Full Text PDFThe crystal structure of the glycosomal enzyme pyruvate phosphate dikinase from the African protozoan parasite Trypanosoma brucei has been solved to 3.0 A resolution by molecular replacement. The search model was the 2.
View Article and Find Full Text PDF