Although duplications have long been recognized as a fundamental process driving major evolutionary innovations, direct estimates of spontaneous chromosome duplication rates, leading to aneuploid karyotypes, are scarce. Here, from mutation accumulation (MA) experiments, we provide the first estimates of spontaneous chromosome duplication rates in six unicellular eukaryotic species, which range from 1 × 10-4 to 1 × 10-3 per genome per generation. Although this is ∼5 to ∼60 times less frequent than spontaneous point mutations per genome, chromosome duplication events can affect 1-7% of the total genome size.
View Article and Find Full Text PDFPhytoplankton-bacteria interactions rule over carbon fixation in the sunlit ocean, yet only a handful of phytoplanktonic-bacteria interactions have been experimentally characterized. In this study, we investigated the effect of three bacterial strains isolated from a long-term microcosm experiment with one strain (Chlorophyta, Mamiellophyceae). We provided evidence that two strains (Alphaproteobacteria) had a beneficial effect on the long-term survival of the microalgae whereas one strain (Flavobacteriia) led to the collapse of the microalga culture.
View Article and Find Full Text PDFAlthough interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga and the most abundant member of its phycosphere, . The prevalence of in cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture.
View Article and Find Full Text PDFis a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation.
View Article and Find Full Text PDFPost-translational regulations of Shaker-like voltage-gated K channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant , where is it expressed namely in the vascular tissues of leaves.
View Article and Find Full Text PDFis an easily cultured representative of unicellular algae (class Mamiellophyceae) that abound in oceans worldwide. Eight complete 13-22 Mb genomes of phylogenetically divergent species within this class are available, and their DNA sequences are nearly always present in metagenomic data produced from marine samples. Here we describe a simplified and robust transformation protocol for the smallest of these algae ().
View Article and Find Full Text PDFA complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca -dependent regulation of Shaker channels by Ca -dependent protein kinases (CPKs) is still elusive.
View Article and Find Full Text PDFLocalization and quantification of expression levels of genes help to determine their function. Localization of gene expression is often achieved through the study of their promoter activity. Three main reporter genes β-glucuronidase (GUS), green fluorescent protein (GFP), and luciferase (LUC) have been intensively used to characterize promoter activities, each having its own specificities and advantages.
View Article and Find Full Text PDFCalcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells.
View Article and Find Full Text PDFThe Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1) is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom.
View Article and Find Full Text PDFBackground: The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock.
View Article and Find Full Text PDFThe marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri.
View Article and Find Full Text PDFCryptochromes (Crys) are blue light receptors believed to have evolved from the DNA photolyase protein family, implying that light control and light protection share a common ancient origin. In this paper, we report the identification of five genes of the Cry/photolyase family (CPF) in two green algae of the Ostreococcus genus. Phylogenetic analyses were used to confidently assign three of these sequences to cyclobutane pyrimidine dimer (CPD) photolyases, one of them to a DASH-type Cry, and a third CPF gene has high homology with the recently described diatom CPF1 that displays a bifunctional activity.
View Article and Find Full Text PDFBiological rhythms that allow organisms to adapt to the solar cycle are generated by endogenous circadian clocks. In higher plants, many clock components have been identified and cellular rhythmicity is thought to be driven by a complex transcriptional feedback circuitry. In the small genome of the green unicellular alga Ostreococcus tauri, two of the master clock genes Timing of Cab expression1 (TOC1) and Circadian Clock-Associated1 (CCA1) appear to be conserved, but others like Gigantea or Early-Flowering4 are lacking.
View Article and Find Full Text PDF