Publications by authors named "Frederic R Danion"

The differentiation between continuous and discrete actions is key for behavioral neuroscience. Although many studies have characterized eye-hand coordination during discrete (e.g.

View Article and Find Full Text PDF

Simultaneous adaptation to opposite visuomotor perturbations is known to be difficult. It has been shown to be possible only in situations where the two tasks are associated with different contexts, being either a different colored background, a different area of workspace, or a different follow-through movement. However, many of these elements evoke explicit mechanisms that could contribute to storing separate (modular) memories.

View Article and Find Full Text PDF

To date, interlimb transfer following visuomotor adaptation has been mainly investigated through discrete reaching movements. Here we explored this issue in the context of continuous manual tracking, a task in which the contribution of online feedback mechanisms is crucial, and in which there is a well-established right (dominant) hand advantage under baseline conditions. We had two objectives (1) to determine whether this preexisting hand asymmetry would persist under visuomotor rotation, (2) to examine interlimb transfer by assessing whether prior experience with the rotation by one hand benefit to the other hand.

View Article and Find Full Text PDF

Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward processes for reaching and feedback processes for tracking. The extent to which feedforward and feedback processes are interrelated when being updated is not settled yet.

View Article and Find Full Text PDF

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior, as is the ability to flexibly combine experience gathered in separate contexts. However, it has been shown that when adapting hand movements to two different visuomotor perturbations in succession, interference effects can occur. Here, we investigate whether these interference effects compromise our ability to adapt to the superposition of the two perturbations.

View Article and Find Full Text PDF

When tracking targets moving in various directions with one's eyes, horizontal components of pursuit are more precise than vertical ones. Is this because horizontal target motion is predicted better or because horizontal movements of the eyes are controlled more precisely? When tracking a visual target with the hand, the eyes also track the target. We investigated whether the directional asymmetries that have been found during isolated eye movements are also present during such manual tracking, and if so, whether individual participants' asymmetry in eye movements is accompanied by a similar asymmetry in hand movements.

View Article and Find Full Text PDF

There is a growing interest in sex differences in human and animal cognition. However, empirical evidences supporting behavioral and neural sex differences in humans remain sparse. Visuomotor behaviors offer a robust and naturalistic empirical framework to seek for the computational mechanisms underlying sex biases in cognition.

View Article and Find Full Text PDF

It is well documented that providing advanced information regarding the spatial location of a target stimulus (i.e., spatial anticipation) or its timing of occurrence (i.

View Article and Find Full Text PDF

The ability to track a moving target with the hand has been extensively studied, but few studies have characterized gaze behavior during this task. Here we investigate gaze behavior when participants learn a new mapping between hand and cursor motion, such that the cursor represented the position of a virtual mass attached to the grasped handle via a virtual spring. Depending on the experimental condition, haptic feedback consistent with mass-spring dynamics could also be provided.

View Article and Find Full Text PDF

When coordinating two hands to achieve a common goal, the nervous system has to assign responsibility to each hand. Optimal control theory suggests that this problem is solved by minimizing costs such as the variability of movement and effort. However, the natural tendency to produce similar movements during bimanual tasks has been somewhat ignored by this approach.

View Article and Find Full Text PDF

Skilled motor behavior relies on the ability to control the body and to predict the sensory consequences of this control. Although there is ample evidence that manual dexterity depends on handedness, it remains unclear whether control and prediction are similarly impacted. To address this issue, right-handed human participants performed two tasks with either the right or the left hand.

View Article and Find Full Text PDF

Adapting hand movements to changes in our body or the environment is essential for skilled motor behavior. Although eye movements are known to assist hand movement control, how eye movements might contribute to the adaptation of hand movements remains largely unexplored. To determine to what extent eye movements contribute to visuomotor adaptation of hand tracking, participants were asked to track a visual target that followed an unpredictable trajectory with a cursor using a joystick.

View Article and Find Full Text PDF

Current theories suggest that the ability to control the body and to predict its associated sensory consequences is key for skilled motor behavior. It is also suggested that these abilities need to be updated when the mapping between motor commands and sensory consequences is altered. Here we challenge this view by investigating the transfer of adaptation to rotated visual feedback between one task in which human participants had to control a cursor with their hand in order to track a moving target, and another in which they had to predict with their eyes the visual consequences of their hand movement on the cursor.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) can interfere with smooth pursuit or with saccades initiated from a fixed position toward a fixed target, but little is known about the effect of TMS on catch-up saccade made to assist smooth pursuit. Here we explored the effect of TMS on catch-up saccades by means of a situation in which the moving target was driven by an external agent, or moved by the participants' hand, a condition known to decrease the occurrence of catch-up saccade. Two sites of stimulation were tested, the vertex and M1 hand area.

View Article and Find Full Text PDF

The ability to visually track, using smooth pursuit eye movements, moving objects is critical in both perceptual and action tasks. Here, by asking participants to view a moving target or track it with their hand, we tested whether different task demands give rise to different gaze strategies. We hypothesized that during hand tracking, in comparison to eye tracking, the frequency of catch-up saccades would be lower, and the smooth pursuit gain would be greater, because it limits the loss of stable retinal and extra-retinal information due to saccades.

View Article and Find Full Text PDF