A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.
View Article and Find Full Text PDFThe radiosensitization potential of focused ultrasound (FUS)-induced mild hyperthermia was assessed in an allogenic subcutaneous C6 glioma tumor model in rats. Mild hyperthermia at 42 °C was induced in tumors using a single-element 350 kHz FUS transducer. Radiation was delivered with a small animal radiation research platform using a single-beam irradiation technique.
View Article and Find Full Text PDFFocused ultrasound (FUS) is a powerful emerging tool for non-invasive, non-ionizing targeted destruction of tumors. The last two decades have seen a growing body of preclinical and clinical literature supporting the capacity of FUS to increase nascent immune responses to tumors and to potentiate cancer immunotherapies (e.g.
View Article and Find Full Text PDFIn transcranial focused ultrasound therapies, such as treating essential tremor via thermal ablation in the thalamus, acoustic energy is focused through the skull using a phased-array transducer. Ray tracing is a computationally efficient method that can correct skull-induced phase aberrations via per-element phase delay calculations using patient-specific computed tomography (CT) data. However, recent studies show that variations in CT-derived Hounsfield unit may account for only 50% of the speed of sound variability in human skull specimens, potentially limiting clinical transcranial ultrasound applications.
View Article and Find Full Text PDFUltrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism.
View Article and Find Full Text PDFImmune checkpoint blockade immunotherapy has radically changed patient outcomes in multiple cancer types. Pancreatic cancer is one of the notable exceptions, being protected from immunotherapy by a variety of mechanisms, including the presence of a dense stroma and immunosuppressive myeloid cells. Previous studies have demonstrated that CD40 stimulation can remodel the tumor microenvironment in a manner that promotes effector immune cell responses and can cooperate with immune checkpoint inhibition for durable tumor control mediated by T cells.
View Article and Find Full Text PDFMicrobubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood.
View Article and Find Full Text PDFFocused ultrasound is a treatment modality increasingly used for diverse therapeutic applications, and currently approved for several indications, including prostate cancers and uterine fibroids. But what about breast cancer? Breast cancer is the most common and deadliest cancer in women worldwide. While there are different treatment strategies available, there is a need for development of more effective and personalized modalities, with fewer side effects.
View Article and Find Full Text PDFUltrasound Med Biol
July 2022
These recommendations are intended to provide guidance and to encourage best practice in reporting therapeutic ultrasound treatment parameters. Detailed uniform reporting will allow testing of therapy ultrasound systems and protocols, cross-comparison of studies between different teams using different systems and validation of therapeutic bio-effects. These recommendations have been divided into two sets, one for clinical and one for preclinical studies, each with stratified reporting categories, to account for the disparities in expertise and access to equipment between sites.
View Article and Find Full Text PDFThe Focused Ultrasound Foundation has developed a low-cost, validated, open-source hydrophone scanner for the spatial characterization of ultrasound transducers. Assembly instructions and a MATLAB control graphical user interface are provided such that the device can be easily replicated for less than $1000 in roughly 40 person-hours. The low-cost scanning tank's performance was compared with data collected with a commercial automated scanning tank.
View Article and Find Full Text PDFUltrasound Med Biol
December 2021
Liposome encapsulation of drugs is an interesting approach in cancer therapy to specifically release the encapsulated drug at the desired treatment site. In addition to thermo-, pH-, light-, enzyme- or redox-responsive liposomes, which have had promising results in (pre-) clinical studies, ultrasound-triggered sonosensitive liposomes represent an exciting alternative to locally trigger the release from these cargos. Localized drug release requires precise tumor visualization to produce a targeted and ultrasound stimulus.
View Article and Find Full Text PDFChemotherapeutic agents such as doxorubicin induce cell cytotoxicity through induction of DNA double-strand breaks. Recent studies have reported the occurrence of DNA double-strand breaks in different cell lines exposed to cavitational ultrasound. As ultrasound stable cavitation can potentiate the therapeutic effects of cytotoxic drugs, we hypothesized that combined treatment with unseeded stable cavitation and doxorubicin would lead to increased DNA damage and would reduce cell viability and proliferation in vitro.
View Article and Find Full Text PDFIntroduction: Glioma remains incurable and a life limiting disease with an urgent need for effective therapies. Sonodynamic therapy (SDT) involves systemic delivery of non-toxic chemical agents (sonosensitizers) that accumulate in tumor cells or environment and are subsequently activated by exposure to low-frequency ultrasound to become cytotoxic agents. Herein, we discuss proposed mechanisms of action of SDT and provide recommendation for future research and clinical applications of SDT for gliomas.
View Article and Find Full Text PDFMicrobubbles (MB) are widely used as contrast agents to perform contrast-enhanced ultrasound (CEUS) imaging and as acoustic amplifiers of mechanical bioeffects incited by therapeutic-level ultrasound. The distribution of MBs in the brain is not yet fully understood, thereby limiting intra-operative CEUS guidance or MB-based FUS treatments. In this paper we describe a robust platform for quantification of MB distribution in the human brain, allowing to quantitatively discriminate between tumoral and normal brain tissues and we provide new information regarding real-time cerebral MBs distribution.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
Transcranial high-intensity focused ultrasound is used in clinics for treating essential tremor (ET) and proposed for many other brain disorders. This promising treatment modality requires high energy resulting eventually in undesired cavitation and potential side effects. The goals of the present work were: 1) to evaluate the potential increase of the cavitation threshold using pseudorandom gated sonications and 2) to assess the heating capabilities with such sonications.
View Article and Find Full Text PDFPerfluorocarbon (PFC) droplets are used in acoustic droplet vaporization (ADV), a phenomenon where droplets vaporize into gas microbubbles under exposure to ultrasound. The size and the size distribution of a phase change contrast agent is an important factor in determining the ADV threshold and the biodistribution. Thus, high throughout manufacturing of uniform-sized droplets, required to maintain spatial control of the vaporization process, remains challenging.
View Article and Find Full Text PDFObjective: Glioblastoma is the most common primary brain tumor; survival is typically 12-18 months after diagnosis. We sought to study the effects of sonodynamic therapy (SDT) using 5-Aminolevulinic acid hydrochloride (5-ALA) and high frequency focused ultrasound (FUS) on 2 glioblastoma cell lines.
Procedure: Rat C6 and human U87 glioblastoma cells were studied under the following conditions: 1 mM 5-ALA (5-ALA); focused ultrasound (FUS); 5-ALA and focused ultrasound (SDT); control.
Objectives: The aim of this study was to evaluate the added value of ultrasound molecular imaging of the vascular growth factor receptor 2 (VEGFR2) expression, using the clinical grade contrast agent BR55, for the early evaluation of antiangiogenic treatment efficacy in a chemo-induced rat mammary tumor model.
Materials And Methods: In this preclinical study, chemo-induced rat mammary tumors were obtained after a single injection of N-nitroso-N-methylurea intraperitoneally in 46 prepubescent (age 38 ± 2 days) female rats. All experiments were performed under the authorization of the Direction Générale de la Santé, Geneva, Switzerland.
Objective: The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes.
Methods: The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes.
Ultrasound-generated non-inertial cavitation has the ability to potentiate the therapeutic effects of cytotoxic drugs. We report a novel strategy to induce and regulate unseeded (without nucleation agents) non-inertial cavitation, where cavitation is initiated, monitored and regulated using a confocal ultrasound setup controlled by an instrumentation platform and a PC programmed feedback control loop. We demonstrate, using 4T1 murine mammary carcinoma as model cell line, that unseeded non-inertial cavitation potentiates the cytotoxicity of doxorubicin, one of the most potent drugs used in the treatment of solid tumors including breast cancer.
View Article and Find Full Text PDFIn ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment.
View Article and Find Full Text PDFTargeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities.
View Article and Find Full Text PDFIn this study, we put forward a new approach to classify early stages of fibrosis based on a multiparametric characterization using backscatter ultrasonic signals. Ultrasonic parameters, such as backscatter coefficient (Bc), speed of sound (SoS), attenuation coefficient (Ac), mean scatterer spacing (MSS), and spectral slope (SS), have shown their potential to differentiate between healthy and pathologic samples in different organs (eye, breast, prostate, liver). Recently, our group looked into the characterization of stages of hepatic fibrosis using the parameters cited above.
View Article and Find Full Text PDF