Dendritic cells (DCs) are instrumental in the initiation of T cell responses, but how thymic and peripheral tolerogenic DCs differ globally from Toll-like receptor (TLR)-induced immunogenic DCs remains unclear. Here, we show that thymic XCR1(+) DCs undergo a high rate of maturation, accompanied by profound gene-expression changes that are essential for central tolerance and also happen in germ-free mice. Those changes largely overlap those occurring during tolerogenic and, more unexpectedly, TLR-induced maturation of peripheral XCR1(+) DCs, arguing against the commonly held view that tolerogenic DCs undergo incomplete maturation.
View Article and Find Full Text PDFPeyer's patches (PPs) are primary inductive sites of mucosal immunity. The PP mononuclear phagocyte system, which encompasses both dendritic cells (DCs) and macrophages, is essential for the initiation of the mucosal immune response. We recently developed a method to isolate each mononuclear phagocyte subset of PP (Bonnardel et al.
View Article and Find Full Text PDFBackground: Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data.
View Article and Find Full Text PDFPeyer's patches (PPs) are primary inductive sites of mucosal immunity. Defining PP mononuclear phagocyte system (MPS) is thus crucial to understand the initiation of mucosal immune response. We provide a comprehensive analysis of the phenotype, distribution, ontogeny, lifespan, function, and transcriptional profile of PP MPS.
View Article and Find Full Text PDFHuman monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1(+) DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1(+) human DC. Assessment of the immunoactivation potential of XCR1(+) human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart.
View Article and Find Full Text PDFIn the skin, the lack of markers permitting the unambiguous identification of macrophages and of conventional and monocyte-derived dendritic cells (DCs) complicates understanding of their contribution to skin integrity and to immune responses. By combining CD64 and CCR2 staining, we successfully identified each of these cell types and studied their origin, transcriptomic signatures, and migratory and T cell stimulatory properties. We also analyzed the impact of microbiota on their development and their contribution to skin inflammation during contact hypersensitivity.
View Article and Find Full Text PDFWhile Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection.
View Article and Find Full Text PDF