Publications by authors named "Frederic Marazzato"

Currently available anthropometric body composition prediction equations were often developed on small participant samples, included only several measured predictor variables, or were prepared using conventional statistical regression methods. Machine learning approaches are increasingly publicly available and have key advantages over statistical modeling methods when developing prediction algorithms on large datasets with multiple complex covariates. This study aimed to test the feasibility of predicting DXA-measured appendicular lean mass (ALM) with a neural network (NN) algorithm developed on a sample of 576 participants using 10 demographic (sex, age, 7 ethnic groupings) and 43 anthropometric dimensions generated with a 3D optical scanner.

View Article and Find Full Text PDF