A convergent and rapid synthesis of original C2,C3-unsaturated, C11,C13-keto-enol macrocycles with a peloruside A skeleton has been developed. These original unsaturated macrocycles constitute valuable platforms to access peloruside A analogues with high diversity. The four-fragment strategy implemented features two aldol-type couplings with the central C12-C14 building block TES-diazoacetone and a late-stage ring-closing metathesis.
View Article and Find Full Text PDFIn this paper, a new access to several chiral 3-aminoglycals as potential precursors for glycosylated natural products is reported from a common starting material, (-)-methyl-L-lactate. The stereodivergent strategy is based on the implementation of a ring-closing metathesis of vinyl ethers as key step of reaction sequences developed.
View Article and Find Full Text PDFA stereospecific Mizoroki-Heck cross-coupling of differently substituted glycals with haloarenes resulting in the exclusive formation of either α- or β-aryl-C-glycosides depending solely on the configuration at C3 was achieved. The reaction was easy to set up because no specific precautions were required concerning moisture or oxygen, and it proceeded by a chirality transfer from C3 to C1. After optimization of cross-coupling conditions, various prepared glycals (7 examples) and arenes (10 examples) were tested, leading stereospecifically to the corresponding aryl-C-glycosides with a carbonyl group at C3, thus opening up new horizons for the total synthesis of glycosylated natural products.
View Article and Find Full Text PDFHeteroplasmic mutations of mitochondrial DNA (mtDNA) are an important source of human diseases. The mechanisms governing transmission, segregation and complementation of heteroplasmic mtDNA-mutations are unknown but depend on the nature and dynamics of the mitochondrial compartment as well as on the intramitochondrial organization and mobility of mtDNA. We show that mtDNA of human primary and immortal cells is organized in several hundreds of nucleoids that contain a mean of 2-8 mtDNA-molecules each.
View Article and Find Full Text PDFMitochondrial fusion remains a largely unknown process despite its observation by live microscopy and the identification of few implicated proteins. Using green and red fluorescent proteins targeted to the mitochondrial matrix, we show that mitochondrial fusion in human cells is efficient and achieves complete mixing of matrix contents within 12 h. This process is maintained in the absence of a functional respiratory chain, despite disruption of microtubules or after significant reduction of cellular ATP levels.
View Article and Find Full Text PDFTwo human Fzo-homologs, mitofusins Mfn1 and Mfn2, are shown by RT-PCR and western blot to be ubiquitous mitochondrial proteins. Protease digestion experiments reveal that Mfn2 is an outer membrane protein with N-terminal and C-terminal domains exposed towards the cytosol. The transmembrane and C-terminal domains of Mfn2 (Mfn2-TMCT) are targeted to mitochondria and deletion of these domains leads to the cytosolic localization of truncated Mfn2 (Mfn2-NT).
View Article and Find Full Text PDF