The ubiquitination process plays a crucial role in neuronal differentiation and function. Numerous studies have focused on the expression and functions of E3 ligases during these different stages, far fewer on E2 conjugating enzymes. In mice, as in humans, these E2s belong to 17 conjugating enzyme families.
View Article and Find Full Text PDFThe ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far.
View Article and Find Full Text PDFThe dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD.
View Article and Find Full Text PDFThe ubiquitin pathway regulates the function of many proteins and controls cellular protein homeostasis. In recent years, it has attracted great interest in neurodevelopmental and neurodegenerative diseases. Here, we have presented the first review on the roles of the 9 proteins of the HECT E3 ligase NEDD4 subfamily in the development and function of neurons in the central nervous system (CNS).
View Article and Find Full Text PDFIn our previous study, in which array CGH was used on 19 Lebanese ASD subjects and their parents, we identified rare copy number variants (CNVs) in 14 subjects. The five remaining subjects did not show any CNVs related to autism spectrum disorders (ASD). In the present complementary study, we applied whole-exome sequencing (WES), which allows the identification of rare genetic variations such as single nucleotide variations and small insertions/deletions, to the five negative CNV subjects.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients.
View Article and Find Full Text PDFThe 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative.
View Article and Find Full Text PDFPurpose: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit.
Methods: Most cases were identified through routine clinical diagnostics.
More than 40 human diseases, mainly diseases affecting the central nervous system, are caused by the expansion of unstable nucleotide repeats. Repeats of sequences like (CAG) present in different genes can be responsible for various diseases of the central nervous system. An expanded hexanucleotide repeat (GGGGCC) in the C9ORF72 gene has been characterized as the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar dementia.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
August 2020
Cytoplasmic aggregation of TAR-DNA binding protein (TDP-43) in Amyotrophic Lateral Sclerosis (ALS) and fronto-temporal lobar dementia (FTLD) is associated with post-translational modifications (PTM) and delocalization. Studies on postmortem brains of ALS and FTLD patients showed the existence of TDP-43 fragments that end at position N291. We report a new heterozygous mutation p.
View Article and Find Full Text PDFGenetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results.
View Article and Find Full Text PDFBackground: There is a strong evidence for genetic factors as the main causes of Autism Spectrum Disorders (ASD). To date, hundreds of genes have been identified either by copy number variations (CNVs) and/or single nucleotide variations. However, despite all the findings, the genetics of these disorders have not been totally explored.
View Article and Find Full Text PDFThe X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003).
View Article and Find Full Text PDFLIMK2 is involved in neuronal functions by regulating actin dynamics. Different isoforms of LIMK2 are described in databanks. LIMK2a and LIMK2b are the most characterized.
View Article and Find Full Text PDF