Most existing forests are subjected to natural and human-mediated selection pressures, which have increased due to climate change and the increasing needs of human societies for wood, fibre and fuel resources. It remains largely unknown how these pressures trigger evolutionary changes. We address this issue here for temperate European oaks ( and ), which grow in mixed stands, under even-aged management regimes.
View Article and Find Full Text PDFBackground: Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance.
Aims: The aim of the current study was to estimate three genetic parameters (i.
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe.
View Article and Find Full Text PDFTo meet the increasing demand of wood biomass worldwide in the context of climate change, developing improved forest tree varieties for high productivity in water-limited conditions is becoming a major issue. This involves breeding for genotypes combining high growth and moderate water loss and thus high water-use efficiency (WUE). The present work provides original data about the genetics of intrinsic WUE (the ratio between net CO2 assimilation rate and stomatal conductance, also estimated by carbon isotope composition of plant material; δ(13)C) and its relation to growth in Pinus pinaster Ait.
View Article and Find Full Text PDF