Publications by authors named "Frederic Laberge"

We used yellow perch (Perca flavescens) captured at four sites differing in legacy industrial pollution in the Lake St. Clair-Detroit River system to evaluate the lingering sublethal effects of industrial pollution. We emphasized bioindicators of direct (toxicity) and indirect (chronic stress, impoverished food web) effects on somatic and organ-specific growth (brain, gut, liver, heart ventricle, gonad).

View Article and Find Full Text PDF

Harmful algal blooms (HABs) release toxic compounds in water and are increasing in frequency worldwide. The neurotoxin β-methylamino-l-alanine (BMAA) is released by HABs and has garnered much attention over the past 20 years due to its association with human neurodegenerative disorders, but its effects on wildlife are still largely unknown. This study characterized the effects of chronic exposure to environmentally relevant concentrations of BMAA on the behavior and brain size of developing zebrafish (Danio rerio).

View Article and Find Full Text PDF

Mechanisms that generate brain size variation and the consequences of such variation on ecological performance are poorly understood in most natural animal populations. We use a reciprocal-transplant common garden experiment and foraging performance trials to test for brain size plasticity and the functional consequences of brain size variation in Pumpkinseed sunfish (Lepomis gibbosus) ecotypes that have diverged between nearshore littoral and offshore pelagic lake habitats. Different age-classes of wild-caught juveniles from both habitats were exposed for 6 months to treatments that mimicked littoral and pelagic foraging.

View Article and Find Full Text PDF

Early development is highly susceptible to environmental influence. We evaluated the role of larval visual environment on brain morphology plasticity in late larval and juvenile stages of Bombina orientalis, an anuran amphibian changing from an aquatic to a terrestrial habitat after metamorphosis. Manipulation of the visual environment was achieved by rearing larvae in normal and darkened water.

View Article and Find Full Text PDF

Teleost fishes occupy a range of ecosystem, and habitat types subject to large seasonal fluctuations. Temperate fishes, in particular, survive large seasonal shifts in temperature, light availability, and access to certain habitats. Mobile species such as lake trout () can behaviorally respond to seasonal variation by shifting their habitat deeper and further offshore in response to warmer surface water temperatures during the summer.

View Article and Find Full Text PDF

Recovery-from-extinction effects in which a conditioned response returns after extinction have been shown in mammals, birds and fish. Thus, these effects appear to be conserved among vertebrates; however, they have yet to be investigated in amphibians. Using prey catching conditioning in the fire-bellied toad (Bombina orientalis), we tested if renewal and reinstatement occurred after extinction when subjects were respectively re-exposed to the context or reinforcer used during conditioning.

View Article and Find Full Text PDF

Objective: To characterize microstructural white matter changes related to relapsing-remitting multiple sclerosis using advanced diffusion MRI modeling and tractography. The association between imaging data and patient's cognitive performance, fatigue severity and depressive symptoms is also explored.

Methods: In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients and 11 healthy controls were compared using high angular resolution diffusion imaging (HARDI).

View Article and Find Full Text PDF

Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad.

View Article and Find Full Text PDF

Habitats can select for specialized phenotypic characteristics in animals. However, the consistency of evolutionary responses to particular environmental conditions remains difficult to predict. One trait of great ecological importance is brain form, which is expected to vary between habitats that differ in their cognitive requirements.

View Article and Find Full Text PDF

A functional relationship between relative brain size and cognitive performance has been hypothesized. However, the influence of ontogenetic niche shifts on cognitive performance is not well understood. Increases in body size can affect niche use but distinguishing nonecologically relevant brain development from effects associated with ecology is difficult.

View Article and Find Full Text PDF

A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms.

View Article and Find Full Text PDF

The development of chronic stress indicators for fish is of great interest, but appropriate non-invasive methods are lagging those used in terrestrial vertebrates. Here, we explore the possibility that levels of the stress hormone cortisol in scales could be used as a chronic stress indicator. Three experiments were conducted to assess the temporal profiles of cortisol rise and fall in plasma and scales of goldfish () in response to stressors of varying intensity and duration.

View Article and Find Full Text PDF

We hypothesised that the exploration tendency of the amphibious mangrove rivulus Kryptolebias marmoratus would be inhibited in the terrestrial environment because of constraints on terrestrial locomotion or orientation. Using a novel object test, we showed that the fish explored objects in the aquatic but not the terrestrial environment, supporting the existence of constraints on terrestrial exploration. In further tests of the effects of extrinsic factors on terrestrial movement between aquatic refuges, shallow water depth simulating desiccation risk and the presence of a conspecific simulating intraspecific competition increased emersion outside of refuges, while high water salinity had no effect.

View Article and Find Full Text PDF

Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat.

View Article and Find Full Text PDF

The habenular complex and its associated axonal pathways are often thought of as phylogenetically conserved features of the brain among vertebrates despite the fact that detailed studies of this brain region are limited to a few species. Here, the gross morphology and axonal projection pattern of the habenular complex of an anuran amphibian, the fire-bellied toad Bombina orientalis, was studied to allow comparison with the situation in other vertebrates. Axonal pathways were traced using biocytin applications in dissected brain preparations.

View Article and Find Full Text PDF

Predators tend to be large and mobile, enabling them to forage in spatially distinct food web compartments (e.g. littoral and pelagic aquatic macrohabitats).

View Article and Find Full Text PDF

Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron.

View Article and Find Full Text PDF

Background: Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada.

View Article and Find Full Text PDF

Conditioned taste avoidance (CTA) helps prevent consumption of dangerous foods. It results from the pairing of a novel food or taste with subsequent aversive consequences, such as illness. Previous studies of CTA in amphibians have produced conflicting results.

View Article and Find Full Text PDF

The cerebral hemispheres of amphibians display paired dorsal and ventral striatum (commonly referred to as striatum proper and nucleus accumbens, respectively). Each striatal region is proposed to be closely associated with a pallidal structure located caudal to it to form a striatopallidal system. In the present study, afferents to the dorsal and ventral striatopallidal systems of the fire-bellied toad (Bombina orientalis) were investigated using the neuronal tracer biocytin.

View Article and Find Full Text PDF

The present report investigated how fire-bellied toads (Bombina orientalis) modified their response in a prey catching task in which the attribution of food reward was contingent on snapping toward a visual stimulus of moving prey displayed on a computer screen. Two experiments investigated modification of the snapping response, with different intervals between the opportunity to snap at the visual stimulus and reward administration. The snapping response of unpaired controls was decreased compared with the conditioned toads when hour or day intervals were used, but intervals of 5 min produced only minimal change in snapping.

View Article and Find Full Text PDF

Animal communication often involves multimodal signals, and interactions between sensory modalities can trigger unique responses in receivers. Response to social signals was investigated in fire-bellied toads by exposing them to playback of male calls (advertisement and release calls) and a video clip of a male conspecific in the laboratory. The cues were presented in isolation and as a combined bimodal stimulus, and approach frequency, latency to approach and time spent around the stimulus source were measured.

View Article and Find Full Text PDF

This study explored the visual discrimination learning ability of fire-bellied toads (Bombina orientalis). Two groups of toads were trained in a simultaneous visual discrimination task involving video footage of either black crickets on a white background (black-cricket toads) or white crickets on a black background (white-cricket toads). Fifteen widely spaced acquisition trials were followed by 12 reversal trials.

View Article and Find Full Text PDF

Plethodontid terrestrial salamanders are emerging models in the study of the evolution of chemical communication in vertebrates. Their vomeronasal system is well defined. It comprises sensory neurons in the epithelium of the vomeronasal organ, whose axons form the vomeronasal nerve projecting to the accessory olfactory bulb (AOB), which in turn projects to the vomeronasal amygdala through the accessory olfactory tract.

View Article and Find Full Text PDF

It was suggested that among extant vertebrates, anuran amphibians display a brain organization closest to the ancestral tetrapod condition, and recent research suggests that anuran brains share important similarities with the brains of amniotes. The thalamus is the major source of sensory input to the telencephalon in both amphibians and amniote vertebrates, and this sensory input is critical for higher brain functions. The present study investigated the thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis, a basal anuran, by using a combination of retrograde tract tracing and intracellular injections with the tracer biocytin.

View Article and Find Full Text PDF