Publications by authors named "Frederic Joubert"

In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux.

View Article and Find Full Text PDF

The efficient ATP production in mitochondria relies on the highly specific organization of its double membrane. Notably, the inner mitochondrial membrane (IMM) displays a massive surface extension through its folding into cristae, along which concentrate respiratory complexes and oligomers of the ATP synthase. Evidence has accumulated to highlight the importance of a specific phospholipid composition of the IMM to support mitochondrial oxidative phosphorylation.

View Article and Find Full Text PDF

Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function.

View Article and Find Full Text PDF

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity.

View Article and Find Full Text PDF

As the places where most of the fuel of the cell, namely, ATP, is synthesized, mitochondria are crucial organelles in eukaryotic cells. The shape of the invaginations of the mitochondria inner membrane, known as a crista, has been identified as a signature of the energetic state of the organelle. However, the interplay between the rate of ATP synthesis and the crista shape remains unclear.

View Article and Find Full Text PDF

ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening.

View Article and Find Full Text PDF

Mitochondrial dynamics is a recent topic of research in the field of cardiac physiology. The study of mechanisms involved in the morphological changes and in the mobility of mitochondria is legitimate since the adult cardiomyocytes possess numerous mitochondria which occupy at least 30% of cell volume. However, architectural constraints exist in the cardiomyocyte that limit mitochondrial movements and communication between adjacent mitochondria.

View Article and Find Full Text PDF

Aims: The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue.

View Article and Find Full Text PDF

The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin.

View Article and Find Full Text PDF

The heart is responsible for pumping blood throughout the blood vessels to the periphery by repeated, rhythmic contractions at variable intensity. As such the heart should permanently adjust energy production to energy utilization and is a high-energy consumer. For this the heart mainly depends on oxidative metabolism for adequate energy production and on efficient energy transfer systems.

View Article and Find Full Text PDF

Cardiomyocyte contractile function requires tight control of the ATP/ADP ratio in the vicinity of the myosin-ATPase and sarcoplasmic reticulum ATPase (SERCA). In these cells, the main systems that provide energy are creatine kinase (CK), which catalyses phosphotransfer from phosphocreatine to ADP, and direct adenine nucleotide channelling (DANC) from mitochondria to ATPases. However, it is not known how and when these complex energetic systems are established during postnatal development.

View Article and Find Full Text PDF

Aims: The myofibrillar and nuclear compartments in cardiomyocytes are known to be sensitive to extracellular mechanical stimuli. Recently, we have shown that alterations in the mitochondrial ionic balance in cells in situ are associated with considerably increased mitochondrial volume. Theoretically, this swelling of mitochondria could impose mechanical constraints on the myofibrils and nuclei in their vicinity.

View Article and Find Full Text PDF

Aims: Increased diastolic sarcoplasmic reticulum (SR) Ca(2+) loss could depress contractility in heart failure. Since the failing myocardium has impaired energetics, we investigated whether Ca(2+) loss is linked to changes in energetic pathways.

Methods And Results: Leakage from SR in mouse permeabilized preparations was assessed using exogenous ATP, ATP + phosphocreatine (activation of bound creatine kinase, CK), ATP + mitochondrial substrates (mitochondrial activation), or with all of these together (optimal energetic conditions) in Ca(2+)-free solution.

View Article and Find Full Text PDF

Local control of ATP/ADP ratio is essential for efficient functioning of cellular ATPases. Since creatine kinase (CK) activity and mitochondrial content are reduced in heart failure (HF), and cardiomyocyte ultrastructure is altered, we hypothesized that these changes may affect the local energetic control of two major cardiac ATPases, the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and the myosin ATPase. Heart failure was induced by aortic stenosis in rats.

View Article and Find Full Text PDF

Because the question "is AMP-activated protein kinase (AMPK) alpha(2)-isoform a friend or a foe in the protection of the myocardium against ischemia-reperfusion injury?" is still in debate, we studied the functional consequence of its deletion on the contractility, the energetics, and the respiration of the isolated perfused heart and characterized the response to low-flow ischemia and reperfusion with glucose and pyruvate as substrates. alpha(2)-AMPK deletion did not affect basal contractility, respiration, and high-energy phosphate contents but induced a twofold reduction in glycogen content and a threefold reduction in glucose uptake. Low-flow ischemia increased AMPK phosphorylation and stimulated glucose uptake and phosphorylation in both alpha(2)-knockout (alpha(2)-KO) and wild-type (WT) groups.

View Article and Find Full Text PDF

Sarcoplasmic reticulum (SR) calcium pump function requires a high local ATP/ADP ratio, which can be maintained by direct nucleotide channelling from mitochondria, and by SR-bound creatine kinase (CK)-catalysed phosphate-transfer from phosphocreatine. We hypothesized that SR calcium uptake supported by mitochondrial direct nucleotide channelling, but not bound CK, depends on the juxtaposition of these organelles. To test this, we studied a well-described model of cytoarchitectural disorganization, the muscle LIM protein (MLP)-null mouse heart.

View Article and Find Full Text PDF

It is generally considered that mitochondria regulate cardiac cell contractility by providing ATP for cellular ATPases and by participating in Ca2+ homeostasis. However, other possible mechanisms by which mitochondria can influence contractility have been largely overlooked. Here, we demonstrate that inhibition of the mitochondrial electron transport chain strongly increases Ca2+-dependent and independent isometric force development in rat ventricular fibers with selectively permeabilized sarcolemma.

View Article and Find Full Text PDF

NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) was evaluated for studying enzyme kinetics in vitro and in isolated mitochondria. Mass, optical, and nuclear magnetic resonance spectroscopy data were consistent with the UV NADH photolysis reaction being NADH --> NAD* + H+ + e-. The overall net reaction was O2 + 2NADH + 2H+ --> 2NAD+ + 2H2O, or in the presence of other competing electron acceptors such as cytochrome c, NADH + 2Cyt(ox) --> NAD+ + H+ + 2Cyt(red).

View Article and Find Full Text PDF

The subcellular fluxes of exchange of ATP and phosphocreatine (PCr) between mitochondria, cytosol, and ATPases were assessed by (31)P NMR spectroscopy to investigate the pathways of energy transfer in a steady state beating heart. Using a combined analysis of four protocols of inversion magnetization transfer associated with biochemical data, three different creatine kinase (CK) activities were resolved in the rat heart perfused in isovolumic control conditions: (i) a cytosolic CK functioning at equilibrium (forward, F(f) = PCr --> ATP, and reverse flux, F(r) = ATP --> PCr = 3.3 mm.

View Article and Find Full Text PDF