Publications by authors named "Frederic J Zecri"

Article Synopsis
  • Scientists are trying to create small molecules that help certain proteins stick together, which can change how cells work.
  • They made about 1 million special compounds using DNA to find out which ones can connect two chosen proteins, specifically VHL and bromodomains.
  • By testing these compounds, they discovered some that could make the bromodomains disappear in cells and even got to see how one of the best compounds interacted with the proteins in a crystal structure.
View Article and Find Full Text PDF

The hallmark of a molecular glue is its ability to induce cooperative protein-protein interactions, leading to the formation of a ternary complex, despite weaker binding toward one or both individual proteins. Notably, the extent of cooperativity distinguishes molecular glues from bifunctional compounds, which constitute a second class of inducers of protein-protein interactions. However, apart from serendipitous discovery, there have been limited rational screening strategies for the high cooperativity exhibited by molecular glues.

View Article and Find Full Text PDF

Diversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs.

View Article and Find Full Text PDF

The hallmark of a molecular glue is its ability to induce cooperative protein-protein interactions, leading to the formation of a ternary complex, despite weaker binding towards one or both individual proteins. Notably, the extent of cooperativity distinguishes molecular glues from bifunctional compounds, a second class of inducers of protein-protein interactions. However, apart from serendipitous discovery, there have been limited rational screening strategies for the high cooperativity exhibited by molecular glues.

View Article and Find Full Text PDF
Article Synopsis
  • Malignant tumors can avoid the immune system's attacks by luring in regulatory T cells (Treg), and the IKZF2 (Helios) transcription factor is essential for Treg cell stability and function.
  • The study introduces NVP-DKY709, a new drug that specifically targets and degrades IKZF2 while leaving other related factors (IKZF1/3) intact, enhancing the immune response against tumors.
  • In tests, NVP-DKY709 not only improved the activity of T-effector cells and reduced tumor growth in mice but is also being explored for its potential as a cancer treatment in clinical trials.
View Article and Find Full Text PDF

Rapid emergence of tumor resistance via RAS pathway reactivation has been reported from clinical studies of covalent KRAS inhibitors. Thus, inhibitors with broad potential for combination treatment and distinct binding modes to overcome resistance mutations may prove beneficial. JDQ443 is an investigational covalent KRAS inhibitor derived from structure-based drug design followed by extensive optimization of two dissimilar prototypes.

View Article and Find Full Text PDF

Cyclopropane-fused N-heterocycles are featured in various biologically active compounds and represent attractive scaffolds in medicinal chemistry. However, synthesis routes to access structurally and functionally diverse cyclopropane-fused N-heterocycles remain underexplored. Leveraging novel α-diazo acylating agents, we report a general approach for the direct and modular synthesis of cyclopropane-fused lactams from unsaturated amines.

View Article and Find Full Text PDF

DNA-encoded libraries of small molecules are being explored extensively for the identification of binders in early drug-discovery efforts. Combinatorial syntheses of such libraries require water- and DNA-compatible reactions, and the paucity of these reactions currently limit the chemical features of resulting barcoded products. The present work introduces strain-promoted cycloadditions of cyclic allenes under mild conditions to DNA-encoded library synthesis.

View Article and Find Full Text PDF

The first examples of biologically active monocyclic 1,2-azaborines have been synthesized and demonstrated to exhibit not only improved in vitro aqueous solubility in comparison with their corresponding carbonaceous analogues, but in the context of a CDK2 inhibitor, also improved biological activity and better in vivo oral bioavailability. This proof-of-concept study establishes the viability of monocyclic 1,2-azaborines as a novel pharmacophore with distinct pharmacological profiles that can help address challenges associated with solubility in drug development research.

View Article and Find Full Text PDF

Multiple sclerosis is a devastating chronic autoimmune disease affecting women and men of all ages. Inflammation of the central nervous system causes demyelination and ultimately neuropsychological dysfunction. Myriocin, a natural product with strong immunosuppressant activity was interrogated leading to a new class of immunomodulator with a unique mode of action.

View Article and Find Full Text PDF

This Letter describes methodology to enable the identification of tool or therapeutic lipopeptides which modulate the function of membrane bound proteins. The choice of lipopeptides as a chemotype is the amalgamation of multiple medicinal chemistry considerations including duration of action, low systemic exposure and access to intracellular components. The 'lipopeptide shuffle' has been applied here to the APJ receptor and has rapidly resulted in the discovery of a 33 nM APJ agonist hit from an initial 369 member lipopeptide synthetic array.

View Article and Find Full Text PDF

High throughput screening and hit to lead optimization led to the identification of 'carene' as a promising scaffold showing selective S1P(1) receptor agonism. In parallel to this work we have established a pharmacophore model for the S1P(1) receptor highlighting the minimal structural requirement necessary for potent receptor agonism.

View Article and Find Full Text PDF

The first phase of the total synthesis of thiostrepton (1), a highly complex thiopeptide antibiotic, is described. After a brief introduction to the target molecule and its structural motifs, it is shown that retrosynthetic analysis of thiostrepton reveals compounds 23, 24, 26, 28, and 29 as potential key building blocks for the projected total synthesis. Concise and stereoselective constructions of all these intermediates are then described.

View Article and Find Full Text PDF