Publications by authors named "Frederic Escartin"

Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene.

View Article and Find Full Text PDF

We have investigated the hitherto unexplored possibility that differences in the catalytic efficiencies of thymidylate synthases ThyX and ThyA, enzymes that produce the essential DNA precursor dTMP, have influenced prokaryotic genome evolution. We demonstrate that DNA replication speed in bacteria and archaea that contain the low-activity ThyX enzyme is up to 10-fold decreased compared with species that contain the catalytically more efficient ThyA. Our statistical studies of >400 genomes indicated that ThyA proteins are preferred for the replication of large genomes, providing further evidence that the thymidylate metabolism is limiting expansion of prokaryotic genomes.

View Article and Find Full Text PDF

Although flavin-dependent ThyX proteins show thymidylate synthase activity in vitro and functionally complement thyA defects in heterologous systems, direct proof of their cellular functions is missing. Using insertional mutagenesis of Rhodobacter capsulatus thyX, we constructed the first defined thyX inactivation mutant. Phenotypic analyses of the obtained mutant strain confirmed that R.

View Article and Find Full Text PDF

Insertion sequences (IS)1397 and ISKpn1, found in Escherichia coli and Klebsiella pneumoniae, respectively, are IS3 family members that insert specifically into short palindromic repeated sequences (palindromic units or PUs). In this paper, we first show that although PUs are naturally absent from extrachromosomal elements, both ISs are able to transpose from the chromosome or from a plasmid into PUs artificially introduced into target plasmids. We also show that ISKpn1 target specificity is restricted to K.

View Article and Find Full Text PDF