In the 2-10 GPa pressure range, ammonia hemihydrate H_{2}O:(NH_{3})_{2} (AHH) is a molecular solid in which intermolecular interactions are ruled by distinct types of hydrogen bonds. Upon heating, the low-temperature ordered P2_{1}/c crystal (AHH-II) transits to a bcc phase (AHH-pbcc) where each site is randomly occupied by water or ammonia. In addition to the site disorder, experiments suggest that AHH-pbcc is a plastic solid, but the physical origin and mechanisms at play for the rotational and site disordering remain unknown.
View Article and Find Full Text PDFBlack phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure ()-temperature () phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. Knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of their anisotropic thermo-mechanical properties and exfoliation mechanism towards the preparation of important single-layer materials like hexagonal boron nitride nanosheets and phosphorene. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP.
View Article and Find Full Text PDFStructural transformation of hot dense water ice is investigated by combining synchrotron x-ray diffraction and a laser-heating diamond anvil cell above 25 GPa. A transition from the body-centered-cubic (bcc) to face-centered-cubic (fcc) oxygen atoms sublattices is observed from 57 GPa and 1500 K to 166 GPa and 2500 K. That is the structural signature of the transition to fcc superionic (fcc SI) ice.
View Article and Find Full Text PDFThe compression of ammonium azide (AA) has been considered to be a promising route for producing high energy-density polynitrogen compounds. So far though, there is no experimental evidence that pure AA can be transformed into polynitrogen materials under high pressure at room temperature. We report here on high pressure () and temperature () experiments on AA embedded in N2 and on pure AA in the range 0-30 GPa, 300-700 K.
View Article and Find Full Text PDFThe liquid-liquid transition (LLT), in which a single-component liquid transforms into another one via a first-order phase transition, is an intriguing phenomenon that has changed our perception of the liquid state. LLTs have been predicted from computer simulations of water, silicon, carbon dioxide, carbon, hydrogen and nitrogen. Experimental evidence has been found mostly in supercooled (that is, metastable) liquids such as YO-AlO mixtures, water and other molecular liquids.
View Article and Find Full Text PDFBlack phosphorus (bP) is a crystalline material which can be seen as an ordered stacking of two-dimensional layers, referred to as phosphorene. The knowledge of the linear thermal expansion coefficients (LTECs) of bP is of great interest in the field of 2D materials for a better understanding of the anisotropic thermal properties and exfoliation mechanism of this material. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the LTECs of bP.
View Article and Find Full Text PDFSynchrotron x-ray diffraction measurements of nitrogen are performed up to 120 GPa to determine the melting curve and the structural changes of the solid and liquid phases along it. The melting temperature exhibits a monotonic increase up to the triple point where the epsilon molecular solid, the cubic gauche covalent solid, and the fluid meet at 116 GPa, 2080 K. Above, the stability of the cubic gauche phase induces a sharp increase of the melting curve.
View Article and Find Full Text PDFNew topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2.
View Article and Find Full Text PDFWe report the first application of a multichannel collimator (MCC) to perform quantitative structure factor measurements of dense low-Z fluids in a diamond anvil cell (DAC) using synchrotron x-ray diffraction. The MCC design, initially developed for the Paris-Edinburgh large volume press geometry, has been modified for use with diamond anvil cells. A good selectivity of the diffracted signal of the dense fluid sample is obtained due to a large rejection of the Compton diffusion from the diamond anvils.
View Article and Find Full Text PDFThe structure of polymeric carbon dioxide (CO2-V) has been solved using synchrotron x-ray powder diffraction, and its evolution followed from 8 to 65 GPa. We compare the experimental results obtained for a 100% CO2 sample and a 1 mol % CO2/He sample. The latter allows us to produce the polymer in a pure form and study its compressibility under hydrostatic conditions.
View Article and Find Full Text PDFWe present an extended investigation of phase I of carbon dioxide by x-ray diffraction and spectroscopic techniques at simultaneous high pressure and high temperature, up to 12 GPa and 800 K. Based on the present and literature data, we show that a Mie-Grüneisen-Debye model reproduces within experimental uncertainties the equation of state of CO(2) over the entire range of stability of phase I. Using infrared and Raman spectroscopy, we have determined the frequencies of the zone-center lattice modes as a function of pressure and temperature.
View Article and Find Full Text PDFThe existence of "intermediate bonding states" in solid CO2, separating the low-pressure molecular phases from the high-pressure polymeric forms, has been the matter of a long-standing debate. Here we determine the structure of CO2-IV using x-ray diffraction of single crystals grown inside a diamond anvil cell at 11.7 GPa and 830 K.
View Article and Find Full Text PDFAngle dispersion X-ray diffraction (AXDX) experiments on nitromethane single crystals and powder were performed at room temperature as a function of pressure up to 19.0 and 27.3 GPa, respectively, in a membrane diamond anvil cell (MDAC).
View Article and Find Full Text PDFWe report the observation of a roughening transition in carbon dioxide along the melting line of phase I, which we call reverse as faceting appears with increasing temperature. The characteristics of the transition are discussed in light of modern theories of roughening and the causes of its reverse behavior investigated. We propose that high temperature faceting is related to a pressure-induced increase of the surface stiffness.
View Article and Find Full Text PDFThe melting curve and fluid equation of state of carbon dioxide have been determined under high pressure in a resistively heated diamond anvil cell. The melting line was determined from room temperature up to 11.1+/-0.
View Article and Find Full Text PDFThis paper presents recent improvement on sound velocity measurements under extreme conditions, illustrated by the hypersonic sound velocity measurements of water up to 723 K and 9 GPa using Brillouin scattering technique. Because water at high pressure and high temperature is chemically very aggressive, these experiments have been carried out using a specific experimental set-up. The present data should be useful to better constrain the water equation of state at high density.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2003
The structural transformations occurring to water from the low- to the high-density regimes have been studied by classical molecular dynamics calculations. The local structure is analyzed through a proper choice of the relevant orientational distribution functions. This approach sheds light on the key role played by the interstitial molecules in the second coordination shell and identifies a clear structural fingerprint of high-density water.
View Article and Find Full Text PDF