Publications by authors named "Frederic Clotman"

Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered.

View Article and Find Full Text PDF

Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1/Onecut1/2 proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH) glutamate neurons through neuron navigator-2 (NAV2).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions.

View Article and Find Full Text PDF

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics.

View Article and Find Full Text PDF

The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults.

View Article and Find Full Text PDF

Aim: This study mapped the spatiotemporal positions and connectivity of Onecut3 neuronal populations in the developing and adult mouse brain.

Methods: We generated fluorescent reporter mice to chart Onecut3 neurons for brain-wide analysis. Moreover, we crossed Onecut3-iCre and Mapt-mGFP (Tau-mGFP) mice to visualize axonal projections.

View Article and Find Full Text PDF

In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations.

View Article and Find Full Text PDF

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs.

View Article and Find Full Text PDF

Genetic and epigenetic factors contribute to the development of the spinal cord. Failure in correct exertion of the developmental programs, including neurulation, neural tube closure and neurogenesis of the diverse spinal cord neuronal subtypes results in defects of variable severity. We here report on the histone methyltransferase Disruptor of Telomeric 1 Like (DOT1L), which mediates histone H3 lysine 79 (H3K79) methylation.

View Article and Find Full Text PDF

In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.

View Article and Find Full Text PDF

Paralog factors are usually described as consolidating biological systems by displaying redundant functionality in the same cells. Here, we report that paralogs can also cooperate in distinct cell populations at successive stages of differentiation. In mouse embryonic spinal cord, motor neurons and V2 interneurons differentiate from adjacent progenitor domains that share identical developmental determinants.

View Article and Find Full Text PDF

Spinal dorsal interneurons, which are generated during embryonic development, relay and process sensory inputs from the periphery to the central nervous system. Proper integration of these cells into neuronal circuitry depends on their correct positioning within the spinal parenchyma. Molecular cues that control neuronal migration have been extensively characterized but the genetic programs that regulate their production remain poorly investigated.

View Article and Find Full Text PDF

Onecut transcription factors are required to maintain Islet1 (Isl1) expression in developing spinal motor neurons (MNs), and this process is critical for proper MN differentiation. However, the mechanisms whereby OC stimulate Isl1 expression remain unknown. CREB-binding protein (CBP) and p300 paralogs are transcriptional coactivators that interact with OC proteins in hepatic cells.

View Article and Find Full Text PDF

Acquisition of proper neuronal identity and position is critical for the formation of neural circuits. In the embryonic spinal cord, cardinal populations of interneurons diversify into specialized subsets and migrate to defined locations within the spinal parenchyma. However, the factors that control interneuron diversification and migration remain poorly characterized.

View Article and Find Full Text PDF

During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown.

View Article and Find Full Text PDF

Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets.

View Article and Find Full Text PDF

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity.

View Article and Find Full Text PDF

Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation.

View Article and Find Full Text PDF

Thioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system.

View Article and Find Full Text PDF

Motor activities are controlled by neural networks in the ventral spinal cord and consist in motor neurons and a set of distinct cardinal classes of spinal interneurons. These interneurons arise from distinct progenitor domains (p0-p3) delineated according to a transcriptional code. Neural progenitors of each domain express a unique combination of transcription factors (TFs) that largely contribute to determine the fate of four classes of interneurons (V0-V3) and motor neurons.

View Article and Find Full Text PDF

The cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb.

View Article and Find Full Text PDF

The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification.

View Article and Find Full Text PDF

Type-I interferons (IFNs) form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum.

View Article and Find Full Text PDF

We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used.

View Article and Find Full Text PDF