The use of low-cost sensors, with open-source code, facilitates greater spatial resolution and flexibility of environmental monitoring, thus generating more information and overcoming limitations of traditional commercial sensors. Measurement of water turbidity using submerged sensors can be problematic in that rapid biofouling requires frequent site visits to remove, clean, calibrate and replace the sensor. We therefore designed an automated system using low-cost commercially-available sensors that pumps water from the stream, samples it for turbidity and purges remaining water, leaving the turbidity sensor dry between measurements, thus greatly reducing the biofouling problem and minimizing operation costs.
View Article and Find Full Text PDFThis study presents the process of design and development of a low-cost turbidimeter for monitoring water quality, facilitating rigorous spatial-temporal variability analysis within large-scale hydrological systems. We propose a low-cost optical turbidimeter, modifying the existent SEN0189 turbidity sensor, Arduino boards, and additional sensors for temperature compensation. We compared a low-cost system with high-tech sensors, modifying the original low-cost SEN0189 probe for enhanced environmental performance.
View Article and Find Full Text PDFQuantifying pollutant removal by stormwater wetlands requires intensive sampling which is cost-prohibitive for authorities responsible for a large number of wetlands. Wetland managers require simple indicators that provide a practical means of estimating performance and prioritising maintenance works across their asset base. We therefore aimed to develop vegetation cover and metrics derived from monitoring water level, as simple indicators of likely nutrient pollutant removal from stormwater wetlands.
View Article and Find Full Text PDFThe large-scale deployment of low-cost monitoring systems has the potential to revolutionize the field of urban hydrology monitoring, bringing improved urban management, and a better living environment. Even though low-cost sensors emerged a few decades ago, versatile and cheap electronics like Arduino could give stormwater researchers a new opportunity to build their own monitoring systems to support their work. To find out sensors which are ready for low-cost stormwater monitoring systems, for the first time, we review the performance assessments of low-cost sensors for monitoring air humidity, wind speed, solar radiation, rainfall, water level, water flow, soil moisture, water pH, conductivity, turbidity, nitrogen, and phosphorus in a unified metrological framework considering numerous parameters.
View Article and Find Full Text PDFFlood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour.
View Article and Find Full Text PDFThis paper aims to develop a methodology to support the sustainable management of Urban Drainage Systems (UDSs) in Algeria. This research is motivated by the various difficulties that the National Sanitation Office (ONA) has in managing this complex infrastructure. The method mainly consists of two approaches: the top-down approach and the bottom-up approach.
View Article and Find Full Text PDFSustainable water management is a global challenge for the 21st century. One key aspect remains protection against urban flooding. The main objective is to ensure or maintain an adequate level of service for all inhabitants.
View Article and Find Full Text PDF