Publications by authors named "Frederic Chen"

Article Synopsis
  • Methanol can be produced from CO or methane, making it a key player in addressing climate change through a methanol economy.
  • Researchers developed a new strain of E. coli that grows rapidly, with a doubling time of 3.5 hours, which is competitive with other methylotrophs.
  • The study highlights the use of dynamic copy number variation (CNV) in creating synthetic microorganisms and points to their potential for sustainable biotechnological advancements.
View Article and Find Full Text PDF
Article Synopsis
  • Regulation of CO fixation in cyanobacteria is crucial for both the organism's survival and the global carbon cycle.
  • A distinct ATP-sensing mechanism in the enzyme phosphoketolase (SeXPK) allows it to redirect carbon flow away from the Calvin-Benson-Bassham cycle when ATP levels decrease.
  • Deleting the SeXPK gene significantly boosts carbon fixation, especially during transitions from light to dark, and can lead to unexpected sucrose secretion, highlighting its regulatory importance across various life forms.
View Article and Find Full Text PDF

Methanol, being electron rich and derivable from methane or CO, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E.

View Article and Find Full Text PDF

Methanol is a potentially attractive substrate for bioproduction of chemicals because of the abundance of natural gas and biogas-derived methane. To move towards utilizing methanol as a sole carbon source, here we engineer an Escherichia coli strain to couple methanol utilization with growth on five-carbon (C5) sugars. By deleting essential genes in the pentose phosphate pathway for pentose utilization and expressing heterologous enzymes from the ribulose-monophosphate (RuMP) pathway, we constructed a strain that cannot grow on xylose or ribose minimal media unless methanol is utilized, creating a phenotype termed "synthetic methanol auxotrophy".

View Article and Find Full Text PDF

Over the past century, Escherichia coli has become one of the best studied organisms on earth. Features such as genetic tractability, favorable growth conditions, well characterized biochemistry and physiology, and availability of versatile genetic manipulation tools make E. coli an ideal platform host for development of industrially viable productions.

View Article and Find Full Text PDF

Macrophages are traditionally viewed as a key component of the immunity defense system. Recent studies have identified resident macrophages in multiple organs including the heart, in which the cells perform their crucial role on tissue repair after myocardial infarction (MI). The cardiac-specific macrophages interdigitate with cardiomyocytes particularly at the atrioventricular node region.

View Article and Find Full Text PDF

Background: FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases.

Main Body: This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides.

View Article and Find Full Text PDF

Keto acid decarboxylase (Kdc) is a key enzyme in producing keto acid derived higher alcohols, like isobutanol. The most active Kdc's are found in mesophiles; the only reported Kdc activity in thermophiles is 2 orders of magnitude less active. Therefore, the thermostability of mesophilic Kdc limits isobutanol production temperature.

View Article and Find Full Text PDF

Among various Z-form DNA inducers, such as transition metal complexes, polyamines and high ionic concentrations, 8-methylguanine have received attention as efficient chemical modifications. Although it is clear that m8-modified guanine base markedly stabilizes the Z conformation of short oligonucleotides under physiological salt conditions, how sequence composition affects the preference of Z-DNA is still not well established. In this study, various oligomers of d(CG)n or d(GC)n containing either 8-methylguanine in a different position were synthesized and their capacity of stabilizing Z-DNA were evaluated by CD spectra and then compared with each other.

View Article and Find Full Text PDF