Objective: Ultrasound speckle tracking enables in vivo measurement of soft tissue deformation or strain, providing a non-invasive diagnostic tool to quantify tissue health. However, adoption into new fields is challenging since algorithms need to be tuned with gold-standard reference data that are expensive or impractical to acquire. Here, we present a novel optimization approach that only requires repeated measurements, which can be acquired for new applications where reference data might not be readily available or difficult to get hold of.
View Article and Find Full Text PDFAchieving osseointegration is a fundamental requirement for many orthopaedic, oral, and craniofacial implants. Osseointegration typically takes three to 6 months, during which time implants are at risk of loosening. The aim of this study was to investigate whether osseointegration could be actively enhanced by delivering controllable electromechanical stimuli to the periprosthetic bone.
View Article and Find Full Text PDFAseptic loosening is the dominant failure mechanism in contemporary knee replacement surgery, but diagnostic techniques are poorly sensitive to the early stages of loosening and poorly specific in delineating aseptic cases from infections. Smart implants have been proposed as a solution, but incorporating components for sensing, powering, processing, and communication increases device cost, size, and risk; hence, minimising onboard instrumentation is desirable. In this study, two wireless, battery-free smart implants were developed that used passive biotelemetry to measure fixation at the implant-cement interface of the tibial components.
View Article and Find Full Text PDFSmart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.
View Article and Find Full Text PDFThe characterisation and monitoring of viscous fluids have many important applications. This paper reports a refined 'dipstick' method for ultrasonic measurement of the properties of viscous fluids. The presented method is based on the comparison of measurements of the ultrasonic properties of a waveguide that is immersed in a viscous liquid with the properties when it is immersed in a reference liquid.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
February 2021
Implant failure can have devastating consequences on patient outcomes following joint replacement. Time to diagnosis affects subsequent treatment success, but current diagnostics do not give early warning and lack accuracy. This research proposes an embedded ultrasound system to monitor implant fixation and temperature - a potential indicator of infection.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2021
Inspection is a key part of the asset management process of industrial plants and there are numerous plate-like structures that require inspection. Ultrasonic guided waves have been extensively used to detect various types of defect by monitoring reflected and transmitted signals because they enable faster screening of large areas. However, ultrasonic guided wave testing becomes difficult for very shallow, sharp defects as current inspection techniques suffer from a lack of sensitivity to such features.
View Article and Find Full Text PDFProc Math Phys Eng Sci
May 2019
Pulse compression has been used for decades in radar, sonar, medical, and industrial ultrasound. It consists in transmitting a modulated or coded excitation, which is then cross-correlated with the received signal such that received echoes are time compressed, thereby increasing their intensity and hence the system resolution and signal-to-noise ratio (SNR). A central problem in pulse-echo systems is that while longer coded excitations yield higher SNRs, the length of the coded excitation or sequence is limited by the distance between the closest reflector and the transmitter/receiver.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2014
In corrosion assessment, ultrasonic wall-thickness measurements are often presented in the form of a color map. However, this gives little quantitative information on the distribution of the thickness measurements. The collected data can be used to form an empirical cumulative distribution function (ECDF), which provides information on the fraction of the surface with less than a certain thickness.
View Article and Find Full Text PDFThe interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2014
The challenge of accurately simulating how incident scalar waves interact with rough boundaries has made it an important area of research within many scientific disciplines. Conventional methods, which in the majority of cases focus only on scattering in two dimensions, often suffer from long simulation times or reduced accuracy, neglecting phenomena such as multiple scattering and surface self-shadowing. A simulation based on the scalar wave distributed point source method (DPSM) is presented as an alternative which is computationally more efficient than fully meshed numerical methods while obtaining greater accuracy than approximate analytical techniques.
View Article and Find Full Text PDFThe transport of bubbles to a neighboring surface is very important in surface chemistry, bioengineering, and ultrasonic cleaning, etc. This paper proposes a multi-bubble transport method by using an acoustic standing wave field and establishes a model that explains the multi-bubble translation by expressing the balance between Bjerknes forces and hydrodynamic forces on a bubble in a liquid medium. Results indicated that the influence of primary Bjerknes force, secondary Bjerknes force, and buoyancy force on the bubble translation depends on the position of the target bubble in the acoustic field.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2011
Guided wave inspection has proven to be a very effective method for the rapid inspection of large structures. The fundamental shear horizontal (SH) wave mode in plates and the torsional mode in pipe-like structures are especially useful because of their non-dispersive character. Guided waves can be generated by either piezoelectric transducers or electro- magnetic acoustic transducers (EMATs), and EMATs can be based on either the Lorentz force or magnetostriction.
View Article and Find Full Text PDFThe use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2011
Conventional ultrasonic transducers cannot withstand high temperatures for two main reasons: the piezoelectric elements within them depolarize, and differential thermal expansion of the different materials within a transducer causes them to fail. In this paper, the design of a high-temperature ultrasonic thickness gauge that bypasses these problems is described. The system uses a waveguide to isolate the vulnerable transducer and piezoelectric elements from the high-temperature measurement zone.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2010
The noncontact nature of electromagnetic acoustic transducers (EMATs) offers a series of advantages over traditional piezoelectric transducers, but these features are counter-balanced by their relatively low signal-to-noise ratio and their strong dependence on material properties such as electric conductivity, magnetic permeability, and magnetostriction. The implication is that full exploitation of EMATs needs detailed modeling of their operation. A finite element model, accounting for the main transduction mechanisms, has been developed to allow the optimization of the transducers.
View Article and Find Full Text PDF