The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as "Lie group thermodynamics" then explains foliation structures of thermodynamics. We then infer a geometric structure for heat equation from this archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes entropy in coadjoint representation as an invariant Casimir function.
View Article and Find Full Text PDFIn 1969, Jean-Marie Souriau introduced a "Lie Groups Thermodynamics" in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau's model considers the statistical mechanics of dynamic systems in their "space of evolution" associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g.
View Article and Find Full Text PDFIn this paper, we describe and exploit a geometric framework for Gibbs probability densities and the associated concepts in statistical mechanics, which unifies several earlier works on the subject, including Souriau's symplectic model of statistical mechanics, its polysymplectic extension, Koszul model, and approaches developed in quantum information geometry. We emphasize the role of equivariance with respect to Lie group actions and the role of several concepts from geometric mechanics, such as momentum maps, Casimir functions, coadjoint orbits, and Lie-Poisson brackets with cocycles, as unifying structures appearing in various applications of this framework to information geometry and machine learning. For instance, we discuss the expression of the Fisher metric in presence of equivariance and we exploit the property of the entropy of the Souriau model as a Casimir function to apply a geometric model for energy preserving entropy production.
View Article and Find Full Text PDFFor the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups.
View Article and Find Full Text PDFWe introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds.
View Article and Find Full Text PDF