We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ∼21 sources that will be detectable by LISA.
View Article and Find Full Text PDFWe present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1.
View Article and Find Full Text PDFThe predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models.
View Article and Find Full Text PDFWe review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations.
View Article and Find Full Text PDFAbout 25 per cent of 'hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems.
View Article and Find Full Text PDFThe ensemble of now more than 250 discovered planetary systems displays a wide range of masses, orbits and, in multiple systems, dynamical interactions. These represent the end point of a complex sequence of events, wherein an entire protostellar disk converts itself into a small number of planetary bodies. Here, we present self-consistent numerical simulations of this process, which produce results in agreement with some of the key trends observed in the properties of the exoplanets.
View Article and Find Full Text PDFDoppler spectroscopy has detected 152 planets around nearby stars. A major puzzle is why many of their orbits are highly eccentric; all planets in our Solar System are on nearly circular orbits, as is expected if they formed by accretion processes in a protostellar disk. Several mechanisms have been proposed to generate large eccentricities after planet formation, but so far there has been little observational evidence to support any particular model.
View Article and Find Full Text PDFCoalescing binary neutron stars (NS) are expected to be an important source of gravitational waves (GW) detectable by laser interferometers. We present here a simple method for determining the compactness ratio M/R of NS based on the observed deviation of the GW energy spectrum from point-mass behavior at the end of inspiral. Our method is based on the properties of quasiequilibrium binary NS sequences and does not require the computation of the full GW signal h(t).
View Article and Find Full Text PDF