Publications by authors named "Freddie Russell-Pavier"

The contact mode high-speed atomic force microscope (AFM) operates orders of magnitude faster than conventional AFMs. It is capable of capturing multiple frames per second with nanometre-scale lateral resolution and subatomic height resolution. This advancement in imaging rate allows for microscale analysis across macroscale surfaces, making it suitable for applications across materials science.

View Article and Find Full Text PDF

Phosphorene is a mono-elemental, two-dimensional (2D) substance with outstanding, highly directional properties and a bandgap that depends on the number of layers of the material. Nanoribbons, meanwhile, combine the flexibility and unidirectional properties of one-dimensional nanomaterials, the high surface area of 2D nanomaterials and the electron-confinement and edge effects of both. The structures of nanoribbons can thus lead to exceptional control over electronic band structure, the emergence of novel phenomena and unique architectures for applications.

View Article and Find Full Text PDF

Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing.

View Article and Find Full Text PDF

A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order.

View Article and Find Full Text PDF