Objectives: The gastrointestinal microbiota is considered important in inflammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn's disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease.
View Article and Find Full Text PDFBacterial β-glucuronidase in the human colon plays an important role in cleaving liver conjugates of dietary compounds and xenobiotics, while other glycosidase activities are involved in the conversion of dietary plant glycosides. Here we detected an increase in β-glucuronidase activity in faecal samples from obese volunteers following a high-protein moderate carbohydrate weight-loss diet, compared with a weight maintenance diet, but little or no changes were observed when the type of fermentable carbohydrate was varied. Other faecal glycosidase activities showed little or no change over a fivefold range of dietary NSP intake, although α-glucosidase increased on a resistant starch-enriched diet.
View Article and Find Full Text PDFThe populations of dominant species within the human colonic microbiota can potentially be modified by dietary intake with consequences for health. Here we examined the influence of precisely controlled diets in 14 overweight men. Volunteers were provided successively with a control diet, diets high in resistant starch (RS) or non-starch polysaccharides (NSPs) and a reduced carbohydrate weight loss (WL) diet, over 10 weeks.
View Article and Find Full Text PDFConjugated linoleic acid (CLA) is formed from linoleic acid (LA; cis-9,cis-12-18:2) by intestinal bacteria. Different CLA isomers have different implications for human health. The aim of this study was to investigate LA metabolism and the CLA isomers formed in two individuals (V1 and V2) with different faecal metabolic characteristics, and to compare fatty acid metabolism with the microbial community composition.
View Article and Find Full Text PDFFaecal bacteria from four human donors and six species of human intestinal bacteria known to metabolize linoleic acid (LA) were incubated with LA in deuterium oxide-enriched medium to investigate the mechanisms of conjugated linoleic acid (CLA) and vaccenic acid (VA) formation. The main CLA products in faecal suspensions, rumenic acid (cis-9,trans-11-CLA; RA) and trans-9,trans-11-CLA, were labelled at C-13, as were other 9,11 geometric isomers. Traces of trans-10,cis-12-CLA formed were labelled to a much lower extent.
View Article and Find Full Text PDFA survey of 30 representative strains of human gram-positive intestinal bacteria indicated that Roseburia species were among the most active in metabolizing linoleic acid (cis-9,cis-12-18:2). Different Roseburia spp. formed either vaccenic acid (trans-11-18:1) or a 10-hydroxy-18:1; these compounds are precursors of the health-promoting conjugated linoleic acid cis-9,trans-11-18:2 in human tissues and the intestine, respectively.
View Article and Find Full Text PDFConjugated linoleic acids (CLA) have been shown to improve human health. They are derived from the microbial conversion of dietary linoleic acid (cis-9,cis-12-18 : 2 (LA)) in the rumen. An investigation was undertaken to determine the role of ruminal ciliate protozoa v.
View Article and Find Full Text PDFBackground: The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium).
Results: A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea.