Publications by authors named "Fred W Wolf"

Article Synopsis
  • Ribosomes are influenced by ubiquitination and deubiquitination processes, with the deubiquitinase OTUD6 playing a key role in protein translation in Drosophila by modifying the RPS7 subunit of the 40S ribosome.
  • Research shows that OTUD6 interacts specifically with the free 40S ribosomes and that several proteins, including RACK1 and E3 ligases like CNOT4 and RNF10, are involved in regulating this interaction and responding to cellular stress.
  • The levels of OTUD6 can change due to aging and stress, suggesting it helps control the initiation of protein translation by affecting the recycling of the 40S ribosomes.
View Article and Find Full Text PDF

Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function.

View Article and Find Full Text PDF

Alcohol tolerance is a simple form of behavioural and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is a useful model for determining the molecular and circuit encoding mechanisms in detail.

View Article and Find Full Text PDF

Alcohol tolerance is a simple form of behavioral and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is useful model for determining the molecular and circuit encoding mechanisms in detail.

View Article and Find Full Text PDF

Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male : rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated.

View Article and Find Full Text PDF

Thirst is a motivational state that drives behaviors to obtain water for fluid homeostasis. We identified two types of central brain interneurons that regulate thirsty water seeking in , that we term the Janu neurons. Janu-GABA, a local interneuron in the subesophageal zone, is activated by water deprivation and is specific to thirsty seeking.

View Article and Find Full Text PDF

larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene , which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various phenotypes.

View Article and Find Full Text PDF

Hunger evokes stereotypic behaviors that favor the discovery of nutrients. The neural pathways that coordinate internal and external cues to motivate foraging behaviors are only partly known. Drosophila that are food deprived increase locomotor activity, are more efficient in locating a discrete source of nutrition, and are willing to overcome adversity to obtain food.

View Article and Find Full Text PDF

Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity.

View Article and Find Full Text PDF

Abnormal buildup of the microtubule associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) and various tauopathies. The mechanisms by which pathological tau accumulates and spreads throughout the brain remain largely unknown. Previously, we demonstrated that a restoration of the major astrocytic glutamate transporter, GLT1, ameliorated a buildup of tau pathology and rescued cognition in a mouse model of AD.

View Article and Find Full Text PDF

Sleep is an essential behavioral state of rest that is regulated by homeostatic drives to ensure a balance of sleep and activity, as well as independent arousal mechanisms in the central brain. Dopamine has been identified as a critical regulator of both sleep behavior and arousal. Here, we present results of a genetic screen that selectively restored the Dopamine Receptor (DopR/DopR1/dumb) to specific neuroanatomical regions of the adult Drosophila brain to assess requirements for DopR in sleep behavior.

View Article and Find Full Text PDF

Unlabelled: Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use.

View Article and Find Full Text PDF

The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior.

View Article and Find Full Text PDF

Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures.

View Article and Find Full Text PDF

Alcohol use disorders are influenced by many interacting genetic and environmental factors. Highlighting this complexity is the observation that large genome-wide association experiments have implicated many genes with weak statistical support. Experimental model systems, cell culture and animal, have identified many genes and pathways involved in ethanol response, but their applicability to the development of alcohol use disorders in humans is undetermined.

View Article and Find Full Text PDF

The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed.

View Article and Find Full Text PDF

Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure.

View Article and Find Full Text PDF

Background: Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood.

Methods: To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes.

View Article and Find Full Text PDF

Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal.

View Article and Find Full Text PDF

Habituation is a universal form of nonassociative learning that results in the devaluation of sensory inputs that have little information content. Although habituation is found throughout nature and has been studied in many organisms, the underlying molecular mechanisms remain poorly understood. We performed a forward genetic screen in Drosophila to search for mutations that modified habituation of an olfactory-mediated locomotor startle response, and we isolated a mutation in the glycogen synthase kinase-3 (GSK-3) homolog Shaggy.

View Article and Find Full Text PDF

During nervous system development, a small number of conserved guidance cues and receptors regulate many axon trajectories. How could a limited number of cues and receptors regulate such complex projection patterns? One way is to modulate receptor function. Here we show that the Caenorhabditis elegans kinesin-related protein VAB-8L, which is necessary and sufficient for posterior cell and growth-cone migrations, directs these migrations by regulating the levels of the guidance receptor SAX-3 (also known as robo).

View Article and Find Full Text PDF

In recent years, it has become clear that growth factors are not only critical for the development of the central nervous system (CNS) but may also be important contributors to other neuronal functions in the adult brain. This symposium, presented at the 2005 RSA meeting, discussed evidence to support the hypothesis that alterations in growth factor pathways produce dramatic changes in the effects of alcohol on the CNS. The 4 speakers showed that the behavioral effects of alcohol in the adult are regulated by 3 growth factors, insulin, glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Although many molecules are necessary for neuronal cell migrations in C. elegans, no guidance cues are known to be essential for any of these cells to migrate along the anteroposterior (AP) axis. We demonstrate that the fibroblast growth factor (FGF) EGL-17, an attractant for the migrating sex myoblasts (SMs), repels the CANs, a pair of neurons that migrate posteriorly from the head to the center of the embryo.

View Article and Find Full Text PDF

Recently, the fruit fly Drosophila melanogaster has been introduced as a model system to study the molecular bases of a variety of ethanol-induced behaviors. It became immediately apparent that the behavioral changes elicited by acute ethanol exposure are remarkably similar in flies and mammals. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses and they develop tolerance upon intermittent ethanol exposure.

View Article and Find Full Text PDF

Susceptibility to drug addiction depends on genetic and environmental factors and their complex interactions. Studies with mammalian models have identified molecular targets, neurochemical systems, and brain regions that mediate some of the addictive properties of abused drugs. Yet, our understanding of how the primary effects of drugs lead to addiction remains incomplete.

View Article and Find Full Text PDF