Introduction: The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions.
Methods: The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied.
Despite substantial evidence supporting the efficacy of prebiotics for promoting host health and stress resilience, few experiments present evidence documenting the dynamic changes in microbial ecology and fecal microbially modified metabolites over time. Furthermore, the literature reports a lack of reproducible effects of prebiotics on specific bacteria and bacterial-modified metabolites. The current experiments examined whether consumption of diets enriched in prebiotics (galactooligosaccharides (GOS) and polydextrose (PDX)), compared to a control diet, would consistently impact the gut microbiome and microbially modified bile acids over time and between two research sites.
View Article and Find Full Text PDFObjective: To develop and present consensus findings of the National Sleep Foundation sleep timing and variability panel regarding the impact of sleep timing variability on health and performance.
Methods: The National Sleep Foundation assembled a panel of sleep and circadian experts to evaluate the scientific evidence and conduct a formal consensus and voting procedure. A systematic literature review was conducted using the NIH National Library of Medicine PubMed database, and panelists voted on the appropriateness of 3 questions using a modified Delphi RAND/UCLA Appropriateness Method with 2 rounds of voting.
Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption.
View Article and Find Full Text PDFIn this review, we provide a summary of the field of mammalian circadian neurobiology circa 2015. While many additional details have emerged in the intervening 7 years, understanding of the fundamental structure and function of this critical neural system remains intact. Thus, the present review continues to provide a valuable introduction for those seeking an integrative multilevel overview of the circadian system.
View Article and Find Full Text PDFAffective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively.
View Article and Find Full Text PDFReduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD.
View Article and Find Full Text PDFPolyphasic sleep is the practice of distributing multiple short sleep episodes across the 24-hour day rather than having one major and possibly a minor ("nap") sleep episode each day. While the prevalence of polyphasic sleep is unknown, anecdotal reports suggest attempts to follow this practice are common, particularly among young adults. Polyphasic-sleep advocates claim to thrive on as little as 2 hours of total sleep per day.
View Article and Find Full Text PDFPrevious studies demonstrate that NCTC 11659 (), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity.
View Article and Find Full Text PDFStudy Objectives: Sleep deprivation induces systemic inflammation that may contribute to stress vulnerability and other pathologies. We tested the hypothesis that immunization with heat-killed Mycobacterium vaccae NCTC 11659 (MV), an environmental bacterium with immunoregulatory and anti-inflammatory properties, prevents the negative impacts of 5 days of sleep disruption on stress-induced changes in sleep, behavior, and physiology in mice.
Methods: In a 2 × 2 × 2 experimental design, male C57BL/6N mice were given injections of either MV or vehicle on days -17, -10, and -3.
Competition for resources often contributes strongly to defining an organism's ecological niche. Endogenous biological rhythms are important adaptations to the temporal dimension of niches, but how other organisms influence such temporal niches has not been much studied, and the role of competition in particular has been even less examined. We investigated how interspecific competition and intraspecific competition for resources shape an organism's activity rhythms.
View Article and Find Full Text PDFIt has been established in recent years that the gut microbiome plays a role in health and disease, potentially via alterations in metabolites that influence host physiology. Although sleep disruption and gut dysbiosis have been associated with many of the same diseases, studies investigating the gut microbiome in the context of sleep disruption have yielded inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene amplicons and untargeted LC-MS/MS mass spectrometry.
View Article and Find Full Text PDFStudy Objectives: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion.
Methods: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings.
Background: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive.
Methods: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station.
The light environment greatly impacts human alertness, mood, and cognition by both acute regulation of physiology and indirect alignment of circadian rhythms. These processes require the melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), but the relevant downstream brain areas involved remain elusive. ipRGCs project widely in the brain, including to the central circadian pacemaker, the suprachiasmatic nucleus (SCN).
View Article and Find Full Text PDFStudy Objectives: Determine stability of individual differences in executive function, cognitive processing speed, selective visual attention, and maintenance of wakefulness during simulated sustained operations with combined sleep restriction and circadian misalignment.
Methods: Twenty healthy adults (eight female), aged 25.7 (±4.
To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted.
View Article and Find Full Text PDFIn addition to the characteristic motor symptoms, Parkinson's disease (PD) often involves a constellation of sleep and mood symptoms. However, the mechanisms underlying these comorbidities are largely unknown. We have previously reconstructed gene networks in the striatum of a population of (C57BL/6J x A/J) F2 mice and associated the networks to sleep and affective phenotypes, providing a resource for integrated analyses to investigate perturbed sleep and affective functions at the gene network level.
View Article and Find Full Text PDFTo understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression.
View Article and Find Full Text PDFThe discovery of the molecular mechanisms underlying the circadian clock, which functions in virtually every cell throughout the body to coordinate biological processes to anticipate and better adapt to daily rhythmic changes in the environment, is one of the major biomedical breakthroughs in the 20th century. Twenty years after this breakthrough, the biomedical community is now at a new frontier to incorporate the circadian clock mechanisms into many areas of biomedical research, as studies continue to reveal an important role of the circadian clock in a wide range of biological functions and diseases. A forefront of this exciting area is the research of interactions between the clock and energy metabolism.
View Article and Find Full Text PDFThe invention of electric light has facilitated a society in which people work, sleep, eat, and play at all hours of the 24-hour day. Although electric light clearly has benefited humankind, exposures to electric light, especially light at night (LAN), may disrupt sleep and biological processes controlled by endogenous circadian clocks, potentially resulting in adverse health outcomes. Many of the studies evaluating adverse health effects have been conducted among night- and rotating-shift workers, because this scenario gives rise to significant exposure to LAN.
View Article and Find Full Text PDFOver the past decade, a large body of literature has demonstrated that disruptions of the endogenous circadian clock, whether environmental or genetic, lead to metabolic dysfunctions that are associated with obesity, diabetes, and other metabolic disorders. The phrase, "It is not only what you eat and how much you eat, but also when you eat" sends a simple message about circadian timing and body weight regulation. Communicating this message to clinicians and patients, while also elucidating the neuroendocrine, molecular, and genetic mechanisms underlying this phrase is essential to embrace the growing knowledge of the circadian impact on metabolism as a part of healthy life style as well as to incorporate it into clinical practice for improvement of overall human health.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC.
View Article and Find Full Text PDF