Publications by authors named "Fred Sigernes"

This study describes rapid prototype construction of small and lightweight push broom Hyper Spectral Imagers (HSI). The dispersive element housings are printed by a thermoplastic 3D printer combined with S-mount optical components and commercial off-the-shelf camera heads. Four models with a mass less than 200 g are presented with a spectral range in the visible to the near-infrared part of the electromagnetic spectrum.

View Article and Find Full Text PDF

A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.

View Article and Find Full Text PDF

A new and improved method to obtain the average spectral pixel responsivity and the quantum efficiency of Digital Single Lens Reflex (DSLR) cameras is outlined. Two semi-professional cameras, the Nikon D300 and the Canon 40D, are evaluated. The cameras red, green and blue pixel responsivities and quantum efficiency are retrieved by illuminating an integrating sphere with a wavelength tunable monochromator.

View Article and Find Full Text PDF

In the presented study a hyperspectral imager (400-700 nm) mounted on a stereo-microscope was used to separate differences in in vivo optical signatures identifying different pigment groups of bloom-forming phytoplankton and macroalgae by comparing spectral absorption, transmittance, and reflectance from 400-700 nm. The results show that the hyperspectral imager could be used to detect spectral characteristics on the microm level to calibrate, validate, identify, and separate objects with differences in color (optical fingerprinting). This information can be used for pigment group specific taxonomy (bio-optical taxonomy), eco-physiological information (e.

View Article and Find Full Text PDF

A method to sensitivity calibrate Digital Single Lens Reflective (DSLR) cameras is outlined. A low intensity calibrated light source tunable in wavelength is described. 31 monochromatic lines from 4000 to 7000 A with a bandpass of approximately 12 A were used to find the spectral responses for the D70 and the D200 cameras manufactured by Nikon.

View Article and Find Full Text PDF