Publications by authors named "Fred Pereira"

Article Synopsis
  • The study aimed to assess cervical cancer screening rates in women with systemic lupus erythematosus (SLE) and identify factors leading to lower screening rates.
  • It involved 130 women aged 21-64, revealing a 61.5% adherence rate to screening guidelines, with women experiencing high disease activity less likely to get screened.
  • Results indicated that perceived barriers and lower self-efficacy regarding screening significantly correlated with reduced participation, emphasizing the need for strategies to improve screening rates in this group.
View Article and Find Full Text PDF

Background: The Texas Developmental Center for AIDS Research (D-CFAR) diversity program, termed the CFAR Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI), was created in 2021 to engage high school students and graduate students from Underrepresented Minorities/Black, Indigenous, and People of Color populations.

Setting: The Texas D-CFAR CDEIPI has partnered with 2 Texas high schools with predominantly economically disadvantaged and minority student populations-Michael E. DeBakey High School for Health Professions in Houston, TX, and the South Texas Independent School District Medical Professions High School in Olmito, TX in the Rio Grande Valley.

View Article and Find Full Text PDF

Background: There is an urgent need to increase diversity among scientific investigators in the HIV research field to be more reflective of communities highly affected by the HIV epidemic. Thus, it is critical to promote the inclusion and advancement of early-stage scholars from racial and ethnic groups underrepresented in HIV science and medicine.

Methods: To widen the HIV research career pathway for early-stage scholars from underrepresented minority groups, the National Institutes of Health supported the development of the Centers for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI).

View Article and Find Full Text PDF

Over 466 million people worldwide are diagnosed with hearing loss (HL). About 90% of HL cases are sensorineural HL (SNHL) with treatments limited to hearing aids and cochlear implants with no FDA-approved drugs. Intriguingly, ADA-deficient patients have been reported to have bilateral SNHL, however, its underlying cellular and molecular basis remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder tied to intellectual disabilities and optic nerve issues, caused by mutations in the NR2F1 gene, which helps regulate gene expression in the brain.
  • - Researchers created a heterozygous knockout mouse model to better mimic human BBSOAS and discovered it exhibited several neurological issues, such as problems with learning/memory, reduced hippocampal volume, and altered fear memory.
  • - The study revealed significant gene expression changes in the hippocampus of the mouse model, indicating that disruption of synaptic plasticity may play a role in the cognitive impairments associated with BBSOAS.
View Article and Find Full Text PDF

Unlabelled: The accumulation of undegraded molecular material leads to progressive neurodegeneration in a number of lysosomal storage disorders (LSDs) that are caused by functional deficiencies of lysosomal hydrolases. To determine whether inducing macroautophagy/autophagy via small-molecule therapy would be effective for neuropathic LSDs due to enzyme deficiency, we treated a mouse model of mucopolysaccharidosis IIIB (MPS IIIB), a storage disorder caused by deficiency of the enzyme NAGLU (alpha-N-acetylglucosaminidase [Sanfilippo disease IIIB]), with the autophagy-inducing compound trehalose. Treated naglu mice lived longer, displayed less hyperactivity and anxiety, retained their vision (and retinal photoreceptors), and showed reduced inflammation in the brain and retina.

View Article and Find Full Text PDF

15q13.3 microdeletion syndrome is characterized by a wide spectrum of neurodevelopmental disorders, including developmental delay, intellectual disability, epilepsy, language impairment, abnormal behaviors, neuropsychiatric disorders, and hypotonia. This syndrome is caused by a deletion on chromosome 15q, which typically encompasses six genes.

View Article and Find Full Text PDF

The motor protein prestin is a member of the SLC26 family of anion antiporters and is essential to the electromotility of cochlear outer hair cells and for hearing. The only direct inhibitor of electromotility and the associated charge transfer is salicylate, possibly through direct interaction with an anion-binding site on prestin. In a screen to identify other inhibitors of prestin activity, we explored the effect of the non-steroid anti-inflammatory drug diflunisal, which is a derivative of salicylate.

View Article and Find Full Text PDF

Atonal homolog 1 (Atoh1) is a basic helix-loop-helix (bHLH) transcription factor that is essential for the genesis, survival, and maturation of a variety of neuronal and non-neuronal cell populations, including those involved in proprioception, interoception, balance, respiration, and hearing. Such diverse functions require fine regulation at the transcriptional and protein levels. Here, we show that serine 193 (S193) is phosphorylated in Atoh1's bHLH domain Knock-in mice of both sexes bearing a GFP-tagged phospho-dead S193A allele on a null background () exhibit mild cerebellar foliation defects, motor impairments, partial pontine nucleus migration defects, cochlear hair cell degeneration, and profound hearing loss.

View Article and Find Full Text PDF

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor.

View Article and Find Full Text PDF

Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons.

View Article and Find Full Text PDF

Full expression of electromotility, generation of non-linear capacitance (NLC), and high-acuity mammalian hearing require prestin function in the lateral wall of cochlear outer hair cells (OHCs). Estimates of the number of prestin molecules in the OHC membrane vary, and a consensus has not emerged about the correlation between prestin expression and prestin-associated charge movement in the OHC. Using an inducible prestin-expressing cell line, we demonstrate that the charge density, but not the voltage at peak capacitance, directly correlates with the amount of prestin in the plasma membrane.

View Article and Find Full Text PDF

The inability of mammals to regenerate auditory hair cells creates a pressing need to understand the means of enhancing hair cell survival following insult or injury. Hair cells are easily damaged by noise exposure, by ototoxic medications and as a consequence of aging processes, all of which lead to progressive and permanent hearing impairment as hair cells are lost. Significant efforts have been invested in designing strategies to prevent this damage from occurring since permanent hearing loss has a profound impact on communication and quality of life for patients.

View Article and Find Full Text PDF

A 63 year-old woman with hyperthyroidism was admitted to the Medical Intensive Care Unit for ARDS following damage to her lungs from propylthiouracil. She was placed on 250 mg SSKI PO TID as an alternative therapy until thyroidectomy could be performed. Four days after admission, she abruptly developed an acneiform rash on her face, shown to be iododerma.

View Article and Find Full Text PDF

The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. Tecta(C1509G) transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss.

View Article and Find Full Text PDF

Background: Both nuclear receptor subfamily 2 group F member 1 (NR2F1) and microRNAs (miRNAs) have been shown to play critical roles in the developing and functional inner ear. Based on previous studies suggesting interplay between NR2F1 and miRNAs, we investigated the coregulation between NR2F1 and miRNAs to better understand the regulatory mechanisms of inner ear development and functional maturation.

Results: Using a bioinformatic approach, we identified 11 potential miRNAs that might coregulate target genes with NR2F1 and analyzed their targets and potential roles in physiology and disease.

View Article and Find Full Text PDF

Atonal homolog1 (Atoh1) encodes a basic helix-loop-helix protein that is the first transcription factor to be expressed in differentiating hair cells. Previous work suggests that expression of Atoh1 in prosensory precursors is necessary for the differentiation and survival of hair cells, but it is not clear whether Atoh1 is required exclusively for these processes, or whether it regulates other functions later during hair cell maturation. We used EGFP-tagged Atoh1 knock-in mice to demonstrate for the first time that Atoh1 protein is expressed in hair cell precursors several days before the appearance of differentiated markers, but not in the broad pattern expected of a proneural gene.

View Article and Find Full Text PDF

Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling.

View Article and Find Full Text PDF

The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes.

View Article and Find Full Text PDF

The head bobber transgenic mouse line, produced by pronuclear integration, exhibits repetitive head tilting, circling behavior, and severe hearing loss. Transmitted as an autosomal recessive trait, the homozygote has vestibular and cochlea inner ear defects. The space between the semicircular canals is enclosed within the otic capsule creating a vacuous chamber with remnants of the semicircular canals, associated cristae, and vestibular organs.

View Article and Find Full Text PDF

Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells.

View Article and Find Full Text PDF
Article Synopsis
  • Most hearing loss is linked to damage of cochlear outer hair cells (OHCs), which depend on the tectorial membrane (TM) for their operation.
  • A specific mutation in the alpha tectorin protein (C1509G) causes hearing loss in humans, and researchers created a mouse model with this mutation to study its effects.
  • The mutant mice showed shortened TM leading to inactive OHCs, but surprisingly had enhanced reverse transduction due to increased prestin levels, revealing complex interactions that affect hearing function.
View Article and Find Full Text PDF

Background: Identification of bona fide direct nuclear receptor gene targets has been challenging but essential for understanding regulation of organismal physiological processes.

Results: We describe a methodology to identify transcription factor binding sites and target genes in vivo by intersecting microarray data, computational binding site queries, and evolutionary conservation. We provide detailed experimental validation of each step and, as a proof of principle, utilize the methodology to identify novel direct targets of the orphan nuclear receptor NR2F1 (COUP-TFI).

View Article and Find Full Text PDF

The solute carrier transmembrane protein prestin (SLC26A5) drives an active electromechanical transduction process in cochlear outer hair cells that increases hearing sensitivity and frequency discrimination in mammals. A large intramembraneous charge movement, the nonlinear capacitance (NLC), is the electrical signature of prestin function. The transmembrane domain (TMD) helices and residues involved in the intramembrane charge displacement remain unknown.

View Article and Find Full Text PDF