Int J Oral Maxillofac Implants
June 2018
Purpose: The prevalence of peri-implantitis has increased significantly, forcing clinicians to search for ways to prevent it. Laser-microtextured surfaces promote soft tissue attachment and provide a tight seal around implants. Hence, the aim of this study was to examine the clinical, radiographic, and histologic features of ligature-induced peri-implantitis, as well as the effect of surgical treatment of these induced peri-implantitis lesions on laser-microtextured implants in a controlled animal model.
View Article and Find Full Text PDFLysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn.
View Article and Find Full Text PDFBimodal flocculation of marine and estuarine sediments describes the aggregation and breakage process in which dense microflocs and floppy macroflocs change their relative mass fraction and develop a bimodal floc size distribution. To simulate bimodal flocculation of such sediments, a Two-Class Population Balance Equation (TCPBE), which includes both size-fixed microflocs and size-varying macroflocs, was developed. The new TCPBE was tested by a model-data fitting analysis with experimental data from 1-D column tests, in comparison with the simple Single-Class PBE (SCPBE) and the elaborate Multi-Class PBE (MCPBE).
View Article and Find Full Text PDFWell-defined solid sources of Pu(III) (PuCl3), Pu(IV) (Pu (NO3)4 and Pu (C2O4)2), and Pu(VI) (Pu02(NO3)2) were placed in lysimeters containing vadose zone sediments and exposed to natural weather conditions for 2 or 11 years. The objective of this study was to measure the release rate of Pu and the changes in the Pu oxidation states from these Pu sources with the intent to develop a reactive transport model source-term. Pu(III) and Pu(IV) sources had identical Pu concentration depth profiles and similar Pu release rates.
View Article and Find Full Text PDFMatrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality.
View Article and Find Full Text PDFUnderstanding the processes controlling Pu mobility in the subsurface environment is important for estimating the amount of Pu waste that can be safely disposed in vadose zone burial sites. To study long-term Pu mobility, four 52-L lysimeters filled with sediment collected from the Savannah River Site near Aiken, South Carolina were amended with well-characterized solid Pu sources (PuIIICl3, PuIV(NO3)4, PuIV(C2O4)2, and PuVIO2(NO3)2) and left exposed to natural precipitation for 2-11 years. Pu oxidation state distribution in the Pu(III) and Pu(IV) lysimeters sediments (a red clayey sediment, pH = 6.
View Article and Find Full Text PDFTo improve understanding of property measurements in heterogeneous media, an energy-based weighting function concept is developed. In (assumed) homogeneous media, the instrument spatial weighting function (ISWF) depends only on the energy dissipation distribution set up by the measurement procedure and it reduces to simply inverse sample volume (uniform weighting) for 1-D parallel flow case (ideal permeameter). For 1-D transient flow in homogeneous media, such as with slug tests, the ISWF varies with position and time, with 95% of the total weighting contained within 115 well radii, even late in the test.
View Article and Find Full Text PDFSubgrid modeling of some type is typically used to account for heterogeneity at scales below the grid scale. The single-domain model (SDM), employing field-scale dispersion, and the dual-domain model (DDM), employing local hydrodynamic dispersion and exchange between domains having large hydraulic conductivity contrasts, are well-known examples. In this paper, the two modeling approaches are applied to tritium migration from the H-area seepage basins to a nearby stream--Fourmile Branch--at the Savannah River Site.
View Article and Find Full Text PDFLysimeter and laboratory studies were conducted to identify the controlling chemical processes influencing Pu(IV) mobility through the vadose zone. A 52-L lysimeter containing sediment from the Savannah River Site, South Carolina and solid PuIV(NO3)4 was left exposed to natural wetting and drying cycles for 11 years before the lysimeter sediment was sampled. Pu had traveled 10 cm, with >95% of the Pu remaining within 1.
View Article and Find Full Text PDFNine cadaver lumbar spines were analyzed by applying nonconstraining nondestructive bending moments while measuring global range of motion, mechanical reaction at the sacrum, applied moment at the top of the specimen, segmental range of motion at L1-L5, and IDP at L1-L4. Each specimen was examined in an intact and instrumented state (with L3-L4 posterior instrumentation) using range of motion-based biomechanical testing, while achieving a similar global ROM in the sagittal, frontal, and transverse planes. An increase in applied moment was required during instrumented testing when compared with intact, and a significant increase in segmental range of motion during instrumented testing was found at all uninstrumented levels.
View Article and Find Full Text PDFDetermination of the potential of a specific confined aquifer as an effective thermal energy storage medium requires thorough knowledge of the geochemical, thermodynamic, and hydraulic properties of the aquifer and its confining layers. A series of laboratory and field studies must be performed in order to determine the fundamental parameters. Procedures and analyses of a series of tests for a confined aquifer near Mobile, Alabama were completed prior to an aquifer thermal energy storage experiment.
View Article and Find Full Text PDF