Heavy metals, such as copper, zinc and cadmium, represent some of the most common and serious pollutants in coastal estuaries. In the present study, we used a combination of linear and artificial neural network (ANN) modelling to detect and explore interactions among low-dose mixtures of these heavy metals and their impacts on fundamental physiological processes in tissues of the Eastern oyster, Crassostrea virginica. Animals were exposed to Cd (0.
View Article and Find Full Text PDFCoupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions.
View Article and Find Full Text PDFThe NOAA Center of Excellence for Oceans and Human Health Initiative (OHHI) at the Hollings Marine Laboratory (HML) is developing a data management framework that supports an integrated research program across scientific disciplines. The primary focus of the database is to support environmental research focused on tidal creek watershed systems. Specifically, the current data holdings include physical water quality parameters, nutrients, pathogens, chemical contaminants, benthic and nekton species abundances and human dimensions data from Georgia, North Carolina and South Carolina dating to 1994.
View Article and Find Full Text PDFThe rapid rate of development in the South Carolina (SC) coastal zone has heightened public concern for the condition of the state's estuaries, and alerted scientists to the potential that novel and adverse effects on estuarine ecosystems may result. Although well-developed databases from long-term monitoring programs exist for many variables valuable in predicting and following system responses, information on phytoplankton distributions in SC estuaries has lagged. Knowledge of the dynamical relationship between environmental (e.
View Article and Find Full Text PDF