External beam radiotherapy is used for radical treatment of organ-confined prostate cancer and to treat lesions in metastatic disease whereas molecular radiotherapy with labelled prostate-specific membrane antigen ligands and radium-223 (Ra) is indicated for metastatic prostate cancer and has demonstrated substantial improvements in symptom control and overall survival compared with standard-of-care treatment. Prostate cancer is considered an immunologically cold tumour, so limited studies investigating the treatment-induced effects on the immune response have been completed. However, emerging data support the idea that radiotherapy induces an immune response in prostate cancer, but whether the response is an antitumour or pro-tumour response is dependent on the radiotherapy regime and is also cell-line dependent.
View Article and Find Full Text PDFExperiments involving the irradiation of water contained within magnesium hydroxide and alumina nanoparticle sludges were conducted and culminated in observations of an increased yield of molecular hydrogen when compared to the yield from the irradiation of bulk water. We show that there is a relationship linking this increased yield to the direct nanoscale ionization mechanism in the nanoparticles, indicating that electron emission from the nanoparticles drives new radiative pathways in the water. Because the chemical changes in these sludges are introduced by irradiation only, we have a genuinely unstirred system.
View Article and Find Full Text PDFA novel treatment planning framework, the Relative Biological Effective Dose (RBED), for high Z nanoparticle (NP)-enhanced photon radiotherapy is developed and tested in silico for the medical exemplar of neoadjuvant (preoperative) breast cancer MV photon radiotherapy. Two different treatment scenarios, conventional and high Z NP enhanced, were explored with a custom Geant4 application that was developed to emulate the administration of a single 2 Gy fraction as part of a 50 Gy radiotherapy treatment plan. It was illustrated that there was less than a 1% difference in the dose deposition throughout the standard and high Z NP-doped adult female phantom.
View Article and Find Full Text PDFAbsolute measurements of the radiolytic yield of Fe3+ in a ferrous sulphate dosimeter formulation (6 mM Fe2+), with a 20 keV x-ray monoenergetic beam, are reported. Dose-rate suppression of the radiolytic yield was observed at dose rates lower than and different in nature to those previously reported with x-rays. We present evidence that this effect is most likely to be due to recombination of free radicals radiolytically produced from water.
View Article and Find Full Text PDFA local effect model (LEM)-based framework capable of interpolating nanoparticle-enhanced photon-irradiated clonogenic cell survival fraction measurements as a function of nanoparticle concentration was developed and experimentally benchmarked for gold nanoparticle (AuNP)-doped bovine aortic endothelial cells (BAECs) under superficial kilovoltage X-ray irradiation. For three different superficial kilovoltage X-ray spectra, the BAEC survival fraction response was predicted for two different AuNP concentrations and compared to experimental data. The ability of the developed framework to predict the cell survival fraction trends is analysed and discussed.
View Article and Find Full Text PDFCancer Nanotechnol
March 2016
A significant new innovation-development model is being launched in the field of cancer and nanotechnology. A significant new innovation-development model is being launched in the field of cancer and nanotechnology.
View Article and Find Full Text PDFGold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition.
View Article and Find Full Text PDFWe present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results.
View Article and Find Full Text PDFHere is detailed a novel and low-cost experimental method for high-throughput automated fluid sample irradiation. The sample is delivered via syringe pump to a nozzle, where it is expressed in the form of a hanging droplet into the path of a beam of ionising radiation. The dose delivery is controlled by an upstream lead shutter, which allows the beam to reach the droplet for a user defined period of time.
View Article and Find Full Text PDFGold nanoparticles (GNPs), have been demonstrated as effective preclinical radiosensitising agents in a range of cell models and radiation sources. These studies have also highlighted difficulty in predicted cellular radiobiological responses mediated by GNPs, based on physical assumptions alone, and therefore suggest a significant underlying biological component of response. This study aimed to determine the role of mitochondrial function in GNP radiosensitisation.
View Article and Find Full Text PDFBackground And Purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.
View Article and Find Full Text PDFThe unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies.
View Article and Find Full Text PDFBackground: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.
View Article and Find Full Text PDFGold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs.
View Article and Find Full Text PDFBackground And Purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.
View Article and Find Full Text PDFA robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose-response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2011
Purpose: Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization.
View Article and Find Full Text PDFDelivering sufficient dose to tumours while sparing surrounding tissue is one of the primary challenges of radiotherapy, and in common practice this is typically achieved by using highly penetrating MV photon beams and spatially shaping dose. However, there has been a recent increase in interest in the possibility of using contrast agents with high atomic number to enhance the dose deposited in tumours when used in conjunction with kV x-rays, which see a significant increase in absorption due to the heavy element's high-photoelectric cross-section at such energies. Unfortunately, the introduction of such contrast agents significantly complicates the comparison of different source types for treatment efficacy, as the dose deposited now depends very strongly on the exact composition of the spectrum, making traditional metrics such as beam quality less valuable.
View Article and Find Full Text PDFResonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).
View Article and Find Full Text PDF