Publications by authors named "Fred Bateman"

A portable calorimeter for direct realization of absorbed dose in medical computed tomography (CT) procedures was constructed and tested in a positron emission tomography (PET) CT scanner. The calorimeter consists of two small thermistors embedded in a polystyrene (PS) cylindrical "core" (1.5 cm diameter) that can be inserted into a cylindrical high-density polyethylene (HDPE) phantom (30 cm diameter).

View Article and Find Full Text PDF

Primary amines form a key component of a well-studied mechanism for capturing carbon dioxide (CO) from the atmosphere. This study comprises a single-step synthesis of a novel sorbent for CO by grafting monomers rich in primary amines to three commercial-grade fabrics: polyethylene terephthalate, high-density polyethylene and nylon 6. An initial evaluation of the sorbency of the chosen monomers, allylamine and butenylamine, qualitatively confirmed their ability to extract CO from the atmosphere.

View Article and Find Full Text PDF

In order to test the effectiveness of oxalate-based polymeric adsorbents in the recovery of uranium from seawater, diallyl oxalate (DAOx) was grafted onto nylon 6 fabrics by exposing the fabric, immersed in pure liquid DAOx or in a surfactant-stabilized dispersion of DAOx in water, to electron beam or gamma radiation. Following drying and weighing to determine the degree of grafting (DoG), the presence of oxalate in the fabrics was verified using XPS. Zeta potential measurements showed the fabric surfaces to be negatively charged.

View Article and Find Full Text PDF

External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose.

View Article and Find Full Text PDF

Recent years have seen a dramatic expansion in the application of radiation and isotopes to security screening. This has been driven primarily by increased incidents involving improvised explosive devices as well as their ease of assembly and leveraged disruption of transportation and commerce. With global expenditures for security-screening systems in the hundreds of billions of dollars, there is a pressing need to develop, apply, and harmonize standards for x-ray and gamma-ray screening systems used to detect explosives and other contraband.

View Article and Find Full Text PDF